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Report of the Executive Committee on the 
Reorganization of the ASME Fluids 

Engineering Division 
R. A . Bajura 

Program Representative 
The Journal of Fluids Engineering is the archival publication 

sponsored by the Fluids Engineering Division of ASME. In 
addition to advertising our technical meetings and programs, 
the Editor also invites news articles about the Division which 
are of special interest to our readers. This editorial contribution 
describes a part of our coordinated activity as a Division to 
review our present status and redefine future goals. 

At the 1989 Winter Annual Meeting, the Executive Com
mittee (EC) of the Fluids Engineering Division (FED) proposed 
a review of the organizational structure of the Division to 
ensure better coordination and to increase participation by 
industrial members of the Division in our technical programs. 

The Committee solicited input from the technical committee 
and coordinating group chairs and reviewed this advice at the 
Technology Executives Conference in March, 1990. We then 
circulated a proposal to the membership in advance of the 1990 
Fluids Engineering Division Spring Meeting in Toronto in June. 

Paul Cooper and Sam Martin chaired an open meeting of 
the Division in Toronto during which the membership au
thorized a new committee structure. The major change resulted 
in the formation of two technical committees to replace three 
existing technical committees: Fluid Mechanics, Fluid Ma
chinery, and Fluid Transients. One of the new committees 
would emphasize fundamental fluid mechanics and the other 
new committee would emphasize engineering applications of 
fluid mechanics. 

Task Force Report Summary 
Members of the Executive Committee, together with the 

technical committee chairs, met in Newark, NJ as a Task Force 
in October, 1990 to formulate procedures to implement the 
recommended changes. Figure 1 illustrates the organizational 
structure of the Fluids Engineering Division resulting from 

these discussions. Highlights of the Task Force Report are 
summarized below. 

1. The Fluid Mechanics Committee, the Fluid Transients 
Committee, and the Fluid Machinery Committee are 
combined into two technical committees named, re
spectively: 

(a) Fluid Applications and Systems Technical Com
mittee (FASTC), and 

(b) Fluid Mechanics Technical Committee (FMTC) 
The new Fluid Mechanics Technical Committee is con
tracted in scope compared to the former committee. The 
Fluid Applications and Systems Technical Committee 
is an expansion of the remaining elements of the Fluid 
Mechanics Committee and the former Fluid Transients 
and Fluid Machinery Committees. Tables 1 and 2 outline 
the program areas and subcommittee structure proposed 
for these two newly-formed committees. 

2. The Multiphase Flow Technical Committee (MFTC) re
mains essentially unchanged. Program areas and the 
subcommittee structure for the MFTC are listed on Ta
ble 3. Topics covered by this committee include all areas 
and applications treated by the Fluid Applications and 
Systems and Fluid Mechanics Technical Committees, 
but as applied to multiphase flows. 

3. The Coordinating Group for Fluid Measurements 
(CGFM) and the Coordinating Group for Computa
tional Fluid Dynamics (CGCFD) were not affected by 
the proposed reorganization. 

4. An Advisory Board is instituted to provide input to the 
FED Executive Committee and to oversee other division-
wide programs. 

5. Elections of officers for the two new committees were 
held at the 1990 WAM. Current officers for the various 
committees are: 

FASTC - Steve Zakem 
FMTC - Hugh Coleman 
MFTC - Jong Kim 
CGFM - Ed Rood 
CGCFD - Ismail Celik 

Their terms expire in June, 1992. 
6. All committees and coordinating groups will undergo a 
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Fig. 1 Organization chart, ASME Fluids Engineering Division, Novem
ber 1991 

Table 1 Fluid Applications and Systems Technical 
Committee 

Program areas and subcommittee structure 
1. Fluid Machinery and Components: 

-Turbomachinery (compressors, pumps and turbines) 
-Hydropower 
-Hydropropulsion (propellers, jet pumps, torpedoes, submarines, 
hydrofoils, flow noise) 

-Valves, Flow Controllers, and Dividers 
-Performance of Machines and Components 
-Other Fluid Machines 

2. Fluid Transients and Structural Interactions: 
-Piping System Transients 
-Power Plant Transients 
-System Transients 
-Fluid Transmission Lines 
-Waterhammer 
-Flow Induced Vibrations 

3. Industrial and Environmental Applications: 
-Positive Displacement Compressors, Pumps, and Motors 
-Internal Combustion Systems 
-Fluid Mechanics in Manufacturing Processes 
-Spray Systems 
-Energy Conversion 
-Fluidics 
-Vehicle Aerodynamics and Hydrodynamics 
-Industrial Aerodynamics and Hydrodynamics 
-Municipal, Industrial, and Medical Waste Treatment and Dis
posal 

-Mixing Processes and Atmospheric Transport 
-Spills 
-Porous Media Flows 
-Space Systems 
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Table 2 Fluid Mechanics Technical Committee 
Program areas and subcommittee structure 

1. Turbulence and Shear Flows: 
-Boundary Layers 
-Separated Flows, Jets, Wakes, and Cavity Flows 
-Bluff Bodies 
-Turbulence 
-Transition 
-Mixing, Dispersion, Plumes, Diffusion 

2. Unsteady Flows: 
-Waves 
-Periodic Flows 
-Unsteady Boundary Layers, Transition, and Separated Flows 
-Biological Flows 
-Vortex Dynamics 
-Instabilities 

3. Aero-Dynamics and Hydro-Dynamics: 
-External Flows 
-Lubrication 
-Potential Flows 
-Shock Waves 
-Inviscid Flows 
-Free Surface Phenomena 

4. Unconventional and Emerging Topics: 
-Chaos and Non-Linear Dynamics 
-Liquid Metals 
-Microgravity 
-Micro Fluid Mechanics (creeping flows, vapor deposition, crystal 
growth) 

-Non-Newtonian Flows 
-Reacting Flows 

Table 3 Multiphase Flow Technical Committee 
Program areas and subcommittee structure 

1. Gas-Solid Flows: 
-Particulate Flows and Aerosols 
-Fluidized Beds 
-Combustion Products 
-Air Pollutants 
-Dusty Flow 
-Snow Motion 
-Particulate Plumes 

2. Gas-Liquid Flows: 
-Cavitation and Related Areas (noise inception, performance of 
propellers, hydrofoils, underwater vehicles, pumps, turbines, 
valves, and orifices) 

-Flow Regimes (bubbly, slug, annular, misty, frothy, and film) 
-Sprays, Droplets, and Atomization 
-Aeration 
-Entrainment 

3. Liquid-Solid Flows: 
-Slurry Flows 
-Sewage Flows and Waste Treatment 
-Muds and Solid Suspensions 
-Mixing of Powders 
-Segregation of Solids 
-Materials Processing 

4. Multicomponent Flows 
-Three Phase Flows 
-Stratified Flows 
-Immiscible Liquids and Gas Mixtures 
-Related Areas 

reevaluation of goals and membership. For those per
sons wishing to participate in the programs of the FED, 
please return the member interest form reproduced as 
Fig. 2 to R. Bajura. 

We invite participation in the work of the Fluids Engineering 
Division by both members and nonmembers. The committees 
and coordinating groups regularly meet at the Winter Annual 
Meetings (WAM) and the Summer Meeting of the FED. 

Coordinating Groups 
The coordinating groups were organized to focus on special 

areas of fluids engineering which are common to the interests 
of the technical committees and the Division as a whole. The 
technical committees and the cooordinating groups will work 
in a matrix-like mode of operation. The coordinating groups 
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TO: R. A. Bajura Phone: 304/293-3449 
105 Stewart Hall Fax: 304/293-7554 
West Virginia University 
Morgantown, WV 26506-6001 

FROM: Name 

Org. 

Street. 

City/St/Zip 

Phone Fax 

Add me to the mail list for the FED Newsletter 

INTEREST AREAS 

Fluid Applications and Systems Technical Committee 

Fluid Mechanics Technical Committee 

Multiphase Flow Technical Committee 

Coordinating Group on Fluid Measurements 

Coordinating Group on Computational Fluid Dynamics 

Journal of Fluids Engineering Editorial Board (Ass. Ed.) 

Advisory Committee 

FED Student Papers Contest 

Special Programs (Education, Research, Industry, etc. ) 

(Specify ) 

FED Executive Committee 

Honors Committee 

Professional Development Committee 

Committee/Group Officer (specify office and committee/ 

group of interest): 

Comments: 

Fig. 2 Member interest form 

communicate with the technical committees through a strong 
liaison representative structure. 

A. Coordinating Group for Fluid Measurements 
The CGFM will continue its present programs in areas such 

as fluid meters, laser doppler anemometry and other optical 
flow measurement and visualization applications, pressure and 
temperature measurements, and experimental uncertainty. 

The purpose of this Group is to coordinate with the technical 
committees to advance the science and application of fluid 
measurement techniques in fluids engineering. Membership is 
open to all interested persons. To ensure coordination of pro
grams, the three technical committees will each appoint two 
liaison representatives to serve on the CGFM. 

B. Coordinating Group for Computational Fluid Dynam
ics 

The CGCFD will continue its present programs in applying 
computational fluid dynamics techniques to the solution of 
fluids engineering problems. Program areas include numerical 
uncertainty, the identification of benchmark cases, and co
operation with similar groups from other technical societies. 

The purpose of this Group is to coordinate with the technical 
committees to provide a forum for discussing the generic area 
of computational fluid dynamics among the members of the 
division and to interact with similar committees/groups of the 
other technical societies. Membership is open to all interested 
persons. To ensure coordination of programs, the three tech
nical committees will each appoint two liaison representatives 
to the CGCFD. 
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Advisory Board 

The FED is instituting a new organizational unit called the 
Advisory Board (AB). The Advisory Board will have three 
major activities: 

1. Serve in an advisory capacity to the FED Executive 
Committee in areas such as: 
-future directions for technical programs 
-ways to enhance industry, government, and university 
cooperation and information exchange 

-involvement in government liaison and input into 
ASME's national agenda 

-ways to increase participation by industrial members 
in activities of the FED 

-other related activities 
2. Work with the Executive Committee on the FED Student 

Papers Contest and review the program on a periodic 
basis 

3. Recommend agendas for special programs such as Ed
ucation, Industry/Government/University Cooperative 
Programs, Research Funding, Industry Programs, and 
other division-wide activities on timely topics. 

Membership on the Advisory Board is open to resource 
persons such as past Executive Committee members, past Tech
nical Committee and Coordinating Group chairs, senior mem

bers of the Division, and others familiar with the broad 
programs of the FED and Fluids Engineering. 

The main function of the Advisory Board will be to conduct 
brainstorming meetings, review the structure of the FED on a 
periodic basis, suggest future directions for the FED, and pro
vide advice to the Executive Committee on matters pertaining 
to the operation of the Division. Advisory Board meetings will 
be informal. Normal duties of the Advisory Board members 
will be to attend the meetings and express their opinions for 
the benefit of the Division. Projects and special assignments 
will be (gladly) made available to those AB members interested 
in assuming responsibility for implementing ideas developed 
by the Advisory Board. 

The Senior Member of the FED Executive Committee will 
be an ex officio member of the Advisory Board and serve as 
secretary to the Board to ensure continuity of information to 
the Executive Committee. The Executive Committee may rec
ommend agenda items to the Advisory Board, which will be 
free to determine its own agenda items and organizational 
structure in the course of its work. 

Warren Wade, Chairman 
Richard Bajura, Program Representative 
Donald Webb, Secretary 
Michael Billet, Membership Representative 
Clayton Crowe, Senior Member 

Members of the Executive Committee for 1991-1992 
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0. M. Griffin 
Naval Research Laboratory, 

Washington, DC 20375-5000. 
Fellow ASME 

M. S. Hall 
Science Applications International 

Corporation, 
McLean, VA 22102 

Review—Vortex Shedding Lock-on 
and Flow Control in Bluff Body 
Wakes 
The results of recent experiments demonstrate that the phenomenon of vortex shed
ding resonance or lock-on is observed also when a bluff body is placed in an incident 
mean flow with a periodic component superimposed upon it. This form of vortex 
shedding and lock-on exhibits a particularly strong resonance between the flow 
perturbations and the vortices, and provides one of several promising means for 
modification and control of the basic formation and stability mechanisms in the 
near-wake of a bluff body. Examples are given of recent direct numerical simulations 
of the vortex lock-on in the periodic flow. These agree well with the results of 
experiments. A discussion also is given of vortex lock-on due to body oscillations 
both normal to and in-line with the incident mean flow, rotational oscillations of 
thebody, and of the effect of sound on lock-on. The lock-on phenomenon isdiscussed 
in the overall context of active and passive wake control, on the basis of these and 
other recent and related results, with particular emphasis placed on active control 
of the circular cylinder wake. 

Introduction 
Vortex streets are formed in the wakes of bluff, or un-

streamlined, bodies over a wide range of Reynolds numbers, 
from approximately 50 to 106 and even higher. The physics of 
vortex street formation and the near-wake flow have been the 
focal point for many past experimental studies, e.g., Roshko 
(1954, 1955), Gerrard (1966), Bearman (1965, 1967), Griffin 
and Ramberg (1974) and, most recently, Unal and Rockwell 
(1988a, b), Ongoren and Rockwell (1988a, b), and Williamson 
and Roshko (1988). One reason for this interest has been the 
importance of knowing how the mean and fluctuating fluid 
forces are generated on the body due to vortex shedding. An
other reason is the perceived connection of the near-wake flow 
to the eventual evolution of the overall middle and far-wake 
vortex patterns (Cimbala et al., 1988; Browne et al., 1989). 
One of the most cogent descriptions of the physics of vortex 
streets and bluff body wakes was given by Morkovin (1964) 
as "a kaleidoscope of challenging fluid phenomena." This 
description is in many ways still true today. Modern high
speed computers and direct and large-eddy numerical simu
lation techniques now allow and, in the future, will further 
allow the vortex formation and wake modification and control 
processes to be studied computationally at high resolution 
(Karniadakis and Triantafyllou, 1989, 1990; Grinstein et al., 
1990, 1991). 

If a bluff cylinder is flexible and lightly damped, or rigid 
and flexibly mounted, then resonant oscillations can be excited 
by the incident flow. As a consequence of this flow-induced 
resonance, the body and wake oscillations have the same fre-

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
March 19, 1991. 

quency which is near one of the characteristic frequencies of 
the structures (Bishop and Hassan, 1964; Koopmann, 1967). 
Extensive recent reviews of vortex shedding from bluff bodies 
and vortex-induced oscillations have been given by Sarpkaya 
(1979) and Bearman (1984). This coincidence or resonance of 
the vortex and vibration frequencies is commonly termed lock-
on. The term phase-locking also has been used in the literature 
(Rockwell, 1990). Lock-on or resonance occurs when the body 
is oscillated in-line with the incident flow (Griffin and Ram
berg, 1976; Ongoren and Rockwell, 1988b), and the lock-on 
resonance also is induced when a cylinder is forced to oscillate 
normal to the flow over the appropriate range of imposed 
frequencies and amplitudes. Two recent studies (Tokomaru 
and Dimotakis, 1991; Filler et al., 1991) have shown that ro
tational oscillations of a circular cylinder can cause lock-on. 
The recent computations of Karniadakis and Triantafyllou 
show that a lock-on state can be reached when a small spatially 
and temporally varying periodic disturbance is introduced into 
the near-wake of the cylinder. The disturbance is analogous 
to a vibrating wire with the appropriate frequency and am
plitude. 

Vortex resonance, or lock-on, has been observed also when 
the incident mean flow has a sufficiently large periodic com
ponent superimposed upon it (Barbi et al., 1986; Armstrong 
et al., 1986, 1987). In this case the cylinder remains stationary, 
but the vortex lock-on resulting from the inflow perturbation 
modifies the character of the near-wake flow. There is a com
plete equivalence between this case and in-line oscillations of 
the cylinder when the acoustic wavelength is long compared 
to the cylinder's diameter. The introduction of an appropriate 
sound field also can cause lock-on to occur (Blevins, 1985). 
All of these external disturbances represent potential means 
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for active control of the bluff body near-wake flow (Rockwell, 
1987, 1990). Active control of the vortex shedding in the wake 
of a stationary circular cylinder by means of acoustic feedback 
was demonstrated in the recent experiments of Ffowes Williams 
and Zhao (1989). Passive control of the shedding process can 
be accomplished by geometric alterations such as a wake split
ter plate (Bearman, 1965; Roshko, 1954,1955; Mansingh, 1986). 
Recent discussions of the stability and control of separated 
flows in general are given by Oertel (1990) and Rockwell (1990). 

Vortex lock-on and resonance phenomena have numerous 
practical engineering applications. These applications abound 
in offshore exploration and drilling, Naval and marine hy
drodynamics, and underwater acoustics. Other areas of en
gineering practice impacted by these phenomena are civil and 
wind engineering, nuclear and conventional power generation, 
and electric power transmission. Modification and control of 
the flow can be employed to reduce the intensity of the wake 
in order to reduce the drag, for example. These same processes 
also can be used to intensify the wake flow in order to enhance 
heat transfer, mixing and combustion. 

The emphasis of this review paper is on vortex shedding 
resonance and lock-on in the near-wakes of bluff bodies. Vor
tex shedding in a flow with a periodic component superimposed 
on the basic mean flow is introduced here as the first case for 
study. This is an interesting bluff body flow which has not 
been studied previously in detail. The more widely studied cases 
of vortex shedding resonance and lock-on due to body oscil
lations both normal to, in-line with the incident mean flow, 
and rotational are also discussed in some detail. The intro
duction of sound also is discussed for the relatively few con
tributions which are available. The discussion here is directed 
principally toward the circular cylinder, but limited discussion 
of other body configurations is introduced at places where it 
seems appropriate to do so. 

Near-Wake Flow Scaling 

Roshko (1954, 1955) and Bearman (1967) originally showed 
that a characteristic group of nondimensional parameters for 
scaling of the wakes of bluff bodies could be derived by ap
plying relatively simple physical arguments. The most recent 
formulation (Griffin, 1978, 1981, 1989) is a universal wake 
Strouhal number St* for vortex shedding based upon measured 
parameters of the bluff body near-wake flow. 

If one considers two shear layers a distance d' apart, with 
the velocity just outside the layers equal to Ub, the mean ve
locity at separation, then a wake Strouhal number can be 
defined as . . , „ 

The characteristic frequency fso associated with the flow is 
assumed to be proportional to the ratio Ub/d'. Here the clas
sical Strouhal number of the vortex wake is 

St = 
fsod 

U 
(2) 

where d is the cylinder diameter and U is the incident flow 
velocity. When Bernoulli's equation is applied to the flow just 
outside the boundary layer at separation, the base pressure 
coefficient is 

n 2(pb-pm) Ub 
(3) 

If the base pressure parameter or velocity ratio K= Ub/U is 
introduced, then 

Kl=\-C, pb 

and 
St id' 

(4) 

(4fl) 
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cod ' d 

LEGEND: 
In-line oscillations; 
O , +T fa = 190. Griffln and Romberg (1976); 
A, Re = 80; A, Re = 4000, Tanida et at. (1973); 
®, Re = 100, Tatsuno (1972). 
Flow perturbations; 
• , Re = 3000; H, Re = 40000, Barbi et al. (1986). 
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Fig. 1 Limits of the lock-on regime as a function of amplitude and 
frequency for in-line oscillations and flow perturbations. For the region 
enclosed by the dashed lines, see Fig. 2. 
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Fig. 2 Limits of the lock-on regime as a function of amplitude and 
frequency for in-line flow perturbations; data from Armstrong et al. (1986) 

A wake Reynolds number Re* is defined in a corresponding 
way as 

p * U»d' i, Jd' Re*= =ReiH — 
v \d 

(5) 

where Re=Ud/v is the usual free-stream Reynolds number. 
These scaling relations are employed later in the paper to cor
relate the near-wake flow properties with one another. 

Flow Perturbations and In-Line Oscillations 
The recent experiments of Armstrong et al. (1986,1987) and 

of Barbi et al. (1986) were conducted to examine the problem 
of vortex lock-on for a cylinder in a stream consisting of a 
steady flow with a periodic component superimposed upon it. 
In earlier experiments, Hatfield and Morkovin (1973) at
tempted to study the same problem, but the results were in-

• conclusive because the flow perturbation amplitude and 
frequency were too low to cause lock-on. The results obtained 
by Barbi et al. and Armstrong et al. show some very basic 
similarities with the earlier experiments of Griffin and Ramberg 
(1976), which were conducted to examine vortex shedding lock-
on for a cylinder oscillating in-line in a steady incident flow. 

The vortex lock-on regime measurements by Barbi et al. are 
compared with those of Griffin and Ramberg in Fig. 1. The 
vertical axis represents two different measures of the pertur
bation amplitude. For the experiments of Griffin and Ram-
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berg, the amplitude parameter is defined by the ratio of the
peak-to-peak amplitude of cylinder displacement 2a and the
cylinder diameter d. And for the experiments of Barbi et aI.,
the normalized "peak-to-peak" incident velocity perturbation
is given by 2!1Vlwd. The horizontal axis is the ratio of the
vibration frequency / and the Strouhal frequency /50 of a sta
tionary cylinder. Also shown are the cylinder vibration results
of Tanida et al. (1973) and of Tatsuno (1972), reproduced
from the paper by Griffin and Ramberg. The dashed lines
enclose the region occupied by the results of Armstrong et al.
(1986, 1987) which are shown on an expanded scale in Fig. 2.
Vortex lock-on and cross-flow oscillations usually occur near
the Strouhal shedding frequency /50' For in-line oscillations
and flow perturbations, the lock-on is caused by frequencies
which occur near twice the Strouhal frequency, /=2/50 , since
the fluctuating drag force is in the flow direction. However,
in many cases the actual lock-on frequency is near the Strouhal
frequency, or half the oscillation or perturbation frequency.

There is generally good agreement between the bounds of
the lock-on regime for the two different types of external
disturbance or flow control, though there is some scatter at
the highest amplitudes. This is most likely due to Reynolds
number effects, as noted by Barbi et al. The latter experiments
were conducted at Re between 3,000 and 40,000, whereas the
results of Tanida et aI., Tatsuno, and of Griffin and Ramberg
were conducted at Re between 80 and 4,000. The overall dif
ferences are relatively small in any case.

In Fig. 2 the vertical and horizontal axes have been scaled
in the same way as in the previous figure. The original results
of Armstrong et al. had been plotted in terms of the rms velocity
u' and the reduced velocity VI/sod. Three body shapes were
investigated, i.e., a circular cylinder, a D-section cylinder, and
a vertical flat plate. It is clear that the circular cylinder, with
free separation points, has a lock-on range of about twice the
breadth of the two bodies with fixed separation points. This
basic difference in the lock-on behavior for these types of bluff
bodies was previously discussed by Bearman and Davies (1975)
and by Bearman (1984) for the case of body oscillations only.
As shown by the former, the afterbody shape plays an im
portant role in the character of the lock-on or resonance, e.g.,
in terms of the response of the base pressure and near wake
flow to the forcing.

The base pressure coefficient Cpb is influenced by the flow
perturbations in much the same manner as in the case of cyl
inder oscillations. For the stationary cylinder the base pressure
coefficient is near Cpb = - 1.44; this value, though somewhat
low for a circular cylinder, is in reasonable agreement with the
results of West and Apelt (1982) for a comparable wind tunnel
blockage ratio of nine percent. When the flow perturbation
was largest, the base pressure was decreased to Cpb = - 1.85
at the point of maximum resonance, a reduced velocity of VI
/sod=2.5 (half the Strouhal value). The measured vortex for
mation region length lfwas reduced by this level of perturbation
to 0.9d from 1.2d, the value measured for the unperturbed
flow (Armstrong et al. 1987).

Lesser decreases in Cpb were measured for smaller levels of
the flow perturbation, with an overall dependence upon re
duced velocity VI/sod. The mean drag coefficient CD increased
from 1.28 to 1.52 for the perturbed flow as compared to the
unperturbed flow. The base pressures of the flat plate and D
section bodies also were decreased by the introduction of the
incident flow perturbations. But the decrease was only half of
that measured for the circular cylinder at the same perturbation
amplitude, which further shows the effect of free versus fixed
separation points on the vortex resonance. These experiments
were conducted at Reynolds numbers between 15,000 and
35,000, and the base pressure coefficients of all three stationary
bodies in the unperturbed flow were effectively constant over
this range.

A recent experimental study of vortex resonance and lock-
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Fig. 3 Time sequence of locked-on vortex shedding produced by cyl·
inder oscillations In·line with the flow at an oscillation frequency of
t= 2 t,.; from Ongoren and Rockwell (1988b)

on due to in-line oscillations of a circular cylinder was con
ducted by Ongoren and Rockwell (1988b). These experiments
also included oscillations of the cylinder at inclination angles
to the flow between a = 0 degrees (in-line) and IX = 90 degrees
(cross-flow), but the emphasis of the discussion here is on the
in-line oscillations. The cross-flow oscillations (Ongoren and
Rockwell, 1988a) are discussed in the next section. A wide
range of vortex patterns was visualized by introducing pulsed
hydrogen bubbles into the incident flow about a circular cyl
inder mounted vertically in a free-surface water channel.

Both symmetric and asymmetric vortex patterns were ob
served over a wide range of oscillation conditions. For the in
line oscillations, vortex lock-on was observed at / = 2, 3, and
4 /50' with an asymmetric street formed at twice the basic
Strouhal frequency and a symmetric street formed at three
times the Strouhal frequency. The asymmetric pattern was
complex in that one row consisted of a line of single vortices,
whereas the other row consisted of a line of oppositely rotating
vortex pairs. The vortex lock-on at three times the Strouhal
frequency resulted in the formation of a symmetric street of
vortices. In these cases the basic patterns persist downstream
over a large number of oscillation cycles. When the oscillation
frequency is four times the Strouhal frequency, a symmetric
pattern is formed but rapidly loses its coherence in the early
wake.

A time sequence over a full in-line oscillation cycle is shown
in Fig. 3 for the condition/=2fso' Figure 3(a) was taken with
the cylinder in its forwardmost position and shows a vortex
shedding from one side of the cylinder as in Figs. 3(c) and (d).
As the cylinder moves through its maximum downstream po
sition and changes direction, a second vortex is formed and
shed from the same side of the cylinder as in Figs. 3(e) and
(f). Then a single vortex is formed from the other side of the
cylinder as the motion cycle continues as shown in Fig. 3(g).
Ongoren and Rockwell observed that the pattern persisted over
50 or more cycles of the oscillation, but often, if the flow was
stopped and restarted, a mirror image of the pattern was
formed. This is but one example of the complexity of the flow
patterns which accompany the oscillations. In this case the
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v(x,y,t) 
-0.13287 0.00233 

Fig. 4 Instantaneous streamlines, at Re = 200, of the forced wake re
sponse at f=2.2fao for vortex shedding from a cylinder in a perturbed 
flow. The wavelength \ of the vortex street is 4.66 cylinder diameters. 
The spectral element computational grid is superimposed on the stream
line pattern. 

Frequency, fd/U 

Fig. 5 A typical power spectrum of the flow velocity, at Re = 200, for 
the location (x = 2d, y=2d) and the forcing conditions given in Fig. 4. 
Only the locked-on shedding frequency, /=1.1 fso, the perturbation fre
quency, f=2.2fso, and their harmonics are dominant in the spectrum. 

oscillation and vortex frequencies are phase-locked, but under 
other nonresonant conditions there was competition between 
the symmetric and asymmetric modes. Under these conditions, 
the lock-on persists in one mode over a specified number of 
cycles and then switches to the other mode. The mode com
petition also is influenced by the upstream feedback of dis
turbances from the near-wake of the cylinder. Complex patterns 
of three vortices such as these also were photographed by 
Griffin and Ramberg (1976) at similar frequencies during their 
wind tunnel experiments. 

Numerical simulation provides yet another method of ex
amining the effects of inflow perturbations and cylinder os
cillations on the wake. This consists of superimposing an 
oscillatory component on the inflow boundary condition for 
a domain such as that shown by the spectral element grid in 
Fig. 4. The example given here was computed at NRL using 
a computer code similar to one employed extensively by Kar-
niadakis and Triantafyllou (1989, 1990). The grid consists of 
56 spectral elements, each of order iV=6. Results of the com
putation are shown in Figs. 4, 5, and 6, in which the lowest 
dominant frequency of the resulting vortex wake is near half 
the perturbation frequency when a boundary condition of the 
form 

M=1.0 + (0.8)sin(4.4ir/OT t) 

y = 0. 

is enforced at the inflow. This also represents an in-line os
cillation, and is thus expected to result in a shedding frequency 
near / = 1.1 fso if lock-on occurs at one-half the perturbation 
frequency. The amplitude of the oscillatory component can be 
expressed as 

a = 0.8 = 7.037r/M, 

Fig. 6 Phase plane plot of the fluctuating velocity components, at 
Re = 200, for the location and forcing conditions given in Figs. 4 and 5. 
The regularity of the plot is demonstrative of the locked-on state of the 
vortex shedding. 
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Fig. 7 Limits of the lock-on regime as a function of amplitude and 
frequency for cross-flow oscillations; from Koopmann (1967) 

so that lock-on does occur and the results are in keeping with 
those shown in Fig. 1. 

After an initial period of time corresponding to the quasi-
steady stage in the forced perturbed flow calculation, the re
sulting streamwise velocity history at a point in the near wake 
is periodic. The corresponding power spectrum in Fig. 5 con
tains primary peaks a t / = l . l and 2.2 fso as expected, and 
secondary peaks at superharmonics of these values. No ad
ditional peaks appear in the spectrum. The phase plane plot 
corresponding to this case is shown in Fig. 6, and with the 
power spectrum gives evidence of lock-on in the fully developed 
flow. Streamlines corresponding to this case are also shown 
in Fig. 4. The vortex spacing here is approximately X = 4.66rf, 
representing a decrease of seven percent over the unforced 
value of X = 5d. The normalized frequency \/d(f/nfso) = 5.13 
for this case. These values compare well with the results of 
experiments which are discussed later in the paRer. A more 
extensive discussion of the spectral element computations of 
the perturbed flow cylinder lock-on is given by Hall and Griffin 
(1991). 
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Fig. 9 The measured dependence between the initial circulation K of
the vortices and the ratio of the formation region length If and the wake
width d' at formation. The Reynolds number is Re == 144; lrom Griffin
and Ramberg (1974).

Flg.8(b)

Fig.8(e)

Flg.8 Flow visualization of the vortex shedding from a circular cylinder
oscillating In cross·flow at a Reynolds number of Re == 190. (a) stationary
cylinder, unforced wake; (b) 2yld == 0.5, flf,. == 0.9; (c) 2yld == 1.1, flf,. == 0.9.

Cross-Flow Oscillations
The excellent reviews by Sarpkaya (1979) and by Bearman

(1984) dealt with cross-flow oscillations of flexibly-mounted
bluff bodies, bodies which were free to oscillate, and those
which were forced. The purpose of the present paper is to
complement these works, to compare with some pertinent past
results, and to highlight more recent developments in the con
text of flow control and modification. The basic character of
cross-flow l.ock-on due to forced oscillations can be represented
by the measurements of Koopmann (1967) which are shown
in Fig. 7. The appearance of the lock-on range is very similar
overall to the corresponding cases of in-line oscillations and

flow perturbations shown in Figs. 1 and 2. However, the im
posed oscillations are near the Strouhal frequency fso rather
than twice its value.

Many other effects of the cross-flow oscillations are also
similar. For example, the longitudinal spacing of the vortex
street adjusts in a similar manner to the example shown earlier;
oscillation frequencies less than fso expand the vortex street
while frequencies greater than Iso contract the pattern. In
creasing the amplitude of oscillation reduces the lateral spacing
of vortices to the point of zero spacing, after which there is a
drastic change in the appearance of the pattern as the flow
adjusts to preclude the transition to a thrust-type vortex street.
Three previously unpublished examples from experiments at
NRL which demonstrate this effect are shown in Fig. 8. The
street behind a stationary cylinder appears in Fig. 8(a) and
shows the well-known geometry which has been visualized by
numerous investigators. When the amplitude of oscillation is
increased as shown in Fig. 8(b), the lateral spacing is much
reduced. For still higher amplitudes of oscillation, beyond the
limit of zero lateral spacing, a complex asymmetric pattern
such as that shown in Fig. 8(c) emerges. These photographs
were taken in a wind tunnel using an aerosol as the indicator.
This emergence of the asymmetric pattern also has been ob
served by Ongoren and Rockwell (1988a) in water, using hy
drogen bubbles as the flow indicator.

The formation region of the vortices as defined by the model
of Gerrard (1966) also varies inversely with frequency in the
resonance or lock-on regime (Griffin and Ramberg, 1974; On
goren and Rockwell, 1988a), and is reduced in length by in
creasing amplitude of oscillation at any given constant
frequency. These changes in the near wake vortex formation
cause corresponding changes in the strength or circulation of
the vortices. Reductions in the vortex formation length result
in increasing the vortex strength by as much as 75 percent at
a Reynolds number of 144. An example is shown in Fig. 9
where the nondimensional initial circulation of the vortices is
plotted against the ratio of the formation length to the wake
width at formation. The basic importance of the length scales
to the near wake flow physics is discussed later in the paper.
This increase in the vortex strength is accompanied by a cor
responding increase in the rate of vorticity generation with
amplitude of oscillation.

The base pressure coefficient Cpb also is reduced significantly
by the oscillations in the lock-on or resonance regime (Stansby,
1976). As an example, the minimum base pressure on a circular
cylinder at resonance was decreased by 33 percent as the am-
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Fig. 10 Effect of lhe ratio of oscillation frequency' to the natural
shedding or Strouhal frequency's. on the vorlex formation region of a
circular cylinder; from Ongoren and Rockwell (1988a). All of the photo.
graphs were taken with the cylinder at its maximum negative position.
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plitude of oscillation (measured in diameters from equilibrium)
increased from O.ld to 0.3d. The Reynolds number of the
experiment was Re = 8600. As mentioned earlier herein, Arm
strong et al. (1987) measured comparable decreases in the base
pressure. However, the level of inflow perturbations was much
less than the oscillation levels required to achieve the same
level of base pressure modification. As noted earlier, the latter
reduction in base pressure was accompanied by a reduction in
the length of the vortex formation region from 1.2d to 0.9d.

The most comprehensive recent study of cross-flow oscil
lations is that of Ongoren and Rockwell (1988a). The Reynolds
number range of the experiments was Re = 580 to 1300. They
found that two fundamental types of lock-on take place; at a
frequency of one-half of the Stouhal frequency, a subharmonic
form of lock-on takes place whereby the shed vortex is always
from one side of the body, whereas at frequencies near the
Strouhal frequency the classical form of lock-on described
above takes place as vortices are shed alternately from the
body to form an altered Karman vortex street pattern.

It has been known for some time (Bearman and Currie,
1979; Zdravkovich, 1982) that a drastic change in the phase
of the vortex shedding, relative to the body oscillations, occurs
in the vicinity of the natural shedding frequency. However,
Ongoren and Rockwell and, earlier, Bearman and Davies (1975)
showed that the afterbody shape plays an important role in
the phase shifting in that bodies with a short or nonexistent
afterbody, i.e., a circular or triangular cylinder, experience a
large phase shift, while a body such as a square or rectangular
cylinder with a relatively large afterbody experiences little or
no phase shift. This phase shift results in the switch of the
initially shed vortex from the upper to the lower side of the
cylinder or vice versa. The presence of the afterbody appears
to induce reattachment of the initially shed vortex and to reduce
the likelihood of the phase shifting. This is yet another indi
cation of the importance of the vortex formation region and
near-wake flow to the shedding process.

The changes in the vortex formation region with the fre
quency of the oscillations are shown by the photographs in
Fig. 10 from Ongoren and Rockwell (1988a). The flow was
visualized in water in the manner described in the previous
section of the paper, and again the results are remarkably
similar to the earlier wind tunnel photographs of Griffin and
Ramberg (1974). All of the photographs were taken with the
cylinder at its lowest position in the oscillation cycle, and the
shift in phase of the shedding relative to the cylinder can be
seen by comparing the wakes at/=0.9/so and/= 1.05/so • The
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Fig. 11 Flow visualizalion of synchronized vortex shedding due to roo
lational oscillalion of a circular cylinder. Legend for data polnts:!l, =8;
Re = 15,000; (a) St,= 0.3, (b) 5t,= 0.5, (e) 5t = 0.7, (d) St,= 0.9; from Tok·
umaru and Oimolakis (1991).

substantial decrease in the length of the vortex formation re
gion with frequency of oscillation also is evident from the
photographs.

Other effects of the cross-flow oscillations observed by On
goren and Rockwell included a large swinging motion of the
circular cylinder wake about the body at frequencies less than
the Strouhal frequency. This swinging motion is largest near
the Strouhal frequency and then it abruptly disappears. There
is evidence of some correlation between the phase shift in the
shedding and the abrupt disappearance of the swinging motion.
The swinging motion does not appear in the case of bodies
with fixed separation points. There were numerous complex
wake patterns observed at other frequencies. For instance,
small-scale vortices were shed at superharmonic frequencies
of n = 2, 3, 4, and higher nonharmonic frequencies, and the
downstream wake eventually recovered to a lock-on and altered
asymmetric pattern similar in form to the classical Karman
vortex pattern. However, the altered pattern departed sub
stantially from the classical Karman street, with the frequency
taking the values la =11n. An interesting aspect of the paper
by Ongoren and Rockwell is the number of historical refer
ences, e.g., Meier-Windhorst (1939).

Rotational Oscillations
Vortex lock-on and control of the near-wake flow also can

be realized with small rotational oscillations of a circular cyl
inder. There are very few studies of this aspect of the problem,
the most recent being those of Tokumaru and Dimotakis (1991)
and of Filler et al. (1991). An important distinction between
the two studies is that in the experiments of Tokumaru and
Dimotakis the maximum rotational velocity of the cylinder

.was on the order of the velocity outside the boundary layer at
separation (approximately 1AU), whereas in the experiments
of Filler et al. the maximum rotational velocity of the cylinder
was only 0.03U. These studies seem to show, however, that
the range of lock-on frequencies, though still probably am
plitude-dependent, is much reduced from what has been ob
served for imposed oscillations and flow perturbations as
discussed earlier. There are essentially two types of forcing
which can be introduced by rotational oscillations. The first
is the classical form of lock-on or resonance which takes place
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Fig. 12 A typical frequency response curve showing the normalized 
velocity response amplitude as a function of the forcing frequency for 
Re = 920, the vibration parameter SI, = 0.14, and d= 1.27 cm; from Filler 
etal. (1991) 

when the oscillations are near the Karman vortex shedding 
frequency. When the Reynolds number is greater than about 
Re = 500, oscillations of higher frequency also can excite the 
Bloor-Gerrard (Bloor, 1964) frequency of instability in the 
shear layers separating from the cylinder. This excitation of 
the B-G instabilities is likely to be caused by inflow pertur
bations and other types of imposed body oscillations as well. 

A series of photographs of vortex lock-on at increasing val
ues of the oscillation Strouhal number St/ are shown in Fig. 
11. The oscillation parameter Q1 = yi/(7, where v is the peak 
circumferential velocity, was kept fixed during the sequence 
of conditions shown in this figure, from Tokumaru and Di-
motakis (1991). The experiments were performed in a CalTech 
water channel at a Reynolds number of Re= 15,000, and the 
flow was visualized by introducing a mixture of colored food 
dye into the water upstream of the cylinder. The dye mixture 
was made neutrally buoyant by diluting it with ethyl alcohol 
(P.E. Dimotakis, private communication). In all of the cases 
shown the vortex shedding is locked-on in the classical manner 
with the imposed rotational oscillations. When the oscillation 
Strouhal number was increased to St/= 1.5, the wake forcing 
went through a transition to the Bloor-Gerrard shear layer 
forcing. For a fixed value of oscillation Strouhal number of 
St/= 1, the transition to shear layer forcing takes place at an 
oscillation parameter of approximately 0= 16. 

A plot of the velocity u' in the wake from Filler et al. (1991) 
as a function of the oscillation Strouhal number St/ is shown 
in Fig. 12. Here the oscillation parameter 0] =wid/2U, where 
oi! is the frequency of the rotational oscillations. At the lower 
frequencies near the usual Karman shedding frequency a large 
resonant peak is seen when the oscillations are in that range. 
However, at the higher imposed frequencies there is a sec
ondary broad peak in the range of the shear layer instability 
frequencies. In the Karman frequency range of vortex shedding 
the wake behaves like a nonlinear oscillator near resonance. 
This behavior is well known (Bishop and Hassan, 1964; Bear-
man, 1984) and has been explored by numerous investigators 
for the cases of cross-flow and in-line oscillations. The forced 
Bloor-Gerrard shear layer instabilities are simply convected 
downstream in the near wake. An important finding by Tok
umaru and Dimotakis (1991) is that active control of the near-
wake vortex formation and flow physics by rotational oscil
lations of the cylinder can reduce the drag on the cylinder by 
as much as a factor of six! This decrease in the drag coefficient 
CD is accompanied by a comparable decrease in the wake 
displacement thickness 5* (a factor of five) as defined by an 
integral of the cross-stream wake velocity distribution over the 
height of the channel. 

There are very few studies of rotational oscillations on wake 
flow control and vortex resonance or lock-on. Examples from 
the two most recent have been given here. For earlier examples 
the reader should refer to the work of Okajima et al. (1975) 
and of Taneda (1978). This is a new and potentially exciting 
approach to the active control of vortex formation and bluff 
body wake flows. 

Fig. 13 Entrainment of natural or unforced vortex shedding at 392 Hz 
by sound at 380 Hz. The vertical scale is the same for all three spectra; 
from Blevins (1985). 

The Effects of Sound 
The application of an appropriate sound field to the flow 

about a rigid cylinder can induce vortex lock-on and resonance 
in the wake. There are even fewer reported studies of the effect 
of sound than of rotational oscillations, the principal example 
of the former being that of Blevins (1985). The only other 
directly related work is that of Okamoto et al. (1981). As noted 
by Blevins, the effect on the vortex shedding of an acoustic 
wave propagating along the axis of a circular cylinder was 
examined by the latter. Only a minor influence was observed 
for sound excitation levels above 20 Pa. 

The experiments performed by Blevins were at Reynolds 
numbers in the range Re = 20,000 to 40,000 in a wind tunnel 
that allowed a transverse sound field to be applied such that 
the cylinder was located at the node of the acoustic pressure 
field. This is the point of maximum induced velocity due to 
the sound. It was observed by Blevins that the vortex lock-on 
was induced by the velocity rather than the pressure. 

An example of the results reported by Blevins (1985) is shown 
in Fig. 13. The frequency of the vortex shedding was/s= 392 
Hz, and the frequency of the applied sound field was/= 380 
Hz. Thus the lock-on occurred at a frequency less than the 
Strouhal frequency. The average spectral output from a flush-
mounted hot-film probe mounted on the cylinder is plotted 
for the three test runs. The spectrum labeled 1 shows the typical 
averaged spectrum for a rigid cylinder in a uniform flow, with 
the broad peak in this case centered at the vortex shedding 
frequency of 392 Hz. When a 100 Pa sound field is applied 
two peaks are present—a sharp peak at 380 Hz induced by the 
applied sound, and a broader reduced and shifted peak due 
to vortex shedding. An increase in the applied sound field to 
250 Pa produces a typical lock-on spectrum with a single sharp 
peak at the frequency of the sound. The lock-on frequency 
here is less than the Strouhal frequency, and it was observed 
by Blevins that the induced resonance always was stronger at 
the reduced frequencies as compared to frequencies higher than 
the Strouhal frequency. The sound field and the vortex shed
ding were phase locked over a range of phase angles which 
varies nearly linearly with the applied sound frequency. 

An additional observation by Blevins (1985) was that tur
bulence in the free stream suppressed the influence of sound 
on the vortex shedding. The results suggest that the induced 
sound field velocity must exceed the turbulence velocities in 
order for the sound to influence the vortex shedding. Also, 
the introduction of sound substantially increased the coherence 
of the vortex shedding along the span of the cylinder as is 
usually found when a circular cylinder is oscillated. 

The Near-Wake Flow Field 
There is a physical dependence between the wake width d' 

at the end of the vortex formation region of a bluff body and 
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Table 1 Legend lor data plotted in Fig. 14 

Symbol 
» 

1-
© 

9 

B D I 

1 
+ 

V - V 

Bluff body type 
Half cylinder 
(D-section) 
Flat plate 

Circular cylinder 

Circular cylinder 

Wide splitter plate 
(D-section) 
Hydrofoil 

D-section cylinder 
D-section cylinder with 
and w/o splitter plate 

Method 
Wind tunnel experiment 

Wind tunnel experiment 

Wind tunnel experiment 

Wind tunnel experiment 

Computation 

Wind tunnel experiment 

Wind tunnel experiment 
Wind tunnel experiment 

Investigators 
Armstrong et al. 

(1986, 1987) 
Armstrong et al. 

(1986, 1987) 
Armstrong et al. 

(1986, 1987) 
Barbi et al. 

(1986) 
Grinstein et al. 

(1991) 
Blake et al. 

(1977) 
Simmons (1975) 
Bearman (1965) 

Fig. 14 Wake width d'Id as a function of the base pressure parameter 
or velocity ratio K. The legend is given in Table 1. The shaded area in 
the figure corresponds to a variety of body geometries and flow con
ditions given in Griffin (1989). 

the base pressure coefficient - Cpb or the related velocity ratio 
K. As discussed earlier, these are important characteristic phys
ical parameters of the bluff body wake. In general, the bluff-
ness of a given body shape is represented by a wider wake, 
and corresponding lower base pressure or higher velocity ratio. 
For a cylinder vibrating normal to the incident flow, the var
iation of both the measured base pressure and wake width with 
the frequency ratio f/fso over the lock-on regime show the 
same resonant behavior (Griffin, 1989). Both -Cpb and d' 
increase to a maximum value and then gradually decrease as 
the upper limit of the lock-on range of frequencies is reached. 
Only the base pressure variation was measured by Armstrong 
et al., but the wake width can be estimated as a function of 
U/fsdd, using the wake similitude relationships summarized 
earlier in the paper and measured values of St and Cpb (or K). 
For the range of Reynolds numbers corresponding to the ex
periments of Armstrong et al., the wake Strouhal number St* 
is essentially constant at a value of 0.16, so that 

d'/d=(St*/St)K 

from Eq. (4a). 
The wake widths for several cylinders and flow conditions 

are plotted as a function of K in Fig. 14. The legend for the 
data in the figure is given in Table 1. This range of the base 

pressure parameter or separation velocity ratio K represents 
the entire regime over which vortex shedding takes place over 
bluff bodies, whether the shedding is natural or unforced, or 
the shedding is controlled or modified by some means such as 
oscillations, in-flow perturbations, sound, and wake splitter 
plates. The shaded area represents a host of results for oscil
lating circular cylinders, D-section cylinders, and flat plates 
under a wide variety of conditions (Griffin, 1989). There is 
generally good agreement between the new perturbed and steady 
flow results and the earlier data, except for the two circular 
cylinder results from Armstrong et al. which are displaced to 
the right of the overall trend of the data set. This departure 
from the overall trend of the results is due to the much reduced 
base pressure measured on the circular cylinder in those ex
periments, as previously mentioned. In the experiments of 
Armstrong et al. the circular cylinder and flat plate base pres
sures were virtually the same under otherwise unvarying con
ditions of blockage, incident flow, axial uniformity, etc. One 
might expect the base pressure coefficient for a circular cylinder 
at the Reynolds numbers studied to be closer to the values of 
Cpb = - 1 to 1.1 measured by Barbi et al. and others at the 
same Reynolds numbers. 

The wake widths for flow over a D-section cylinder com
puted by Grinstein et al. (1990, 1991) are also plotted in Fig. 
14. The results shown represent a two-dimensional computa
tion using the flux-corrected transport (FCT) algorithm, but 
comparable results were obtained with companion three-di
mensional computations described by Grinstein et al. (1990). 
These computations were made for compressible flows with 
freestream Mach numbers in the range 0.3 to 0.6 at standard 
temperature and pressure conditions. However, for these Mach 
numbers compressibility effects are relatively small and rea
sonable comparisons can be made with incompressible flow 
experiments. The wake widths plotted in Fig. 14 were obtained 
directly from computed contour plots of rms velocity u' at 
the end of the vortex formation region. The results shown 
represent flow over the body both with and without a splitter 
plate attached and they agree remarkably well with the ex
perimental results of Blade et al. (1977), Simmons (1975) and 
Bearman (1965). The D-section bluff body results overall rep
resent the lowest regime of K which has been observed thus 
far. 

A comprehensive experimental study of the effects of wake 
splitter plates on vortex shedding from a circular cylinder was 
made recently by Unal and Rockwell (1988b). The experiments 
were conducted in the Reynolds number range Re =140 to 
5000, and the primary objective was to study the effects of the 
passive wake interference on the formation region of the vor
tices. An unusual aspect of these experiments was the ratio of 
the plate thickness h to the cylinder diameter d, which was 
approximately 0.5. Also, the plate length was approximately 
lp = 24d cylinder diameters, in contrast to the splitter plate 
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Table 2 Longitudinal vortex spacing or wavelength in the near-
wake of a circular cylinder vibrating in-line with an incident uni
form flow 

Vibration Frequency Vortex Relative Vortex 
equency, 
/(Hz) 

69.2 
73.6 
75.6 
78.9 
80.4 

ratio, spacing, 
X/d 

Reynolds number = 

1.88 
2.00 
2.06 
2.14 
2.18 

5.2 
4.9 
4.7 
4.7 
4.4 

change, 
AX/X 

= 190 

+ 0.07 
0 

-0 .05 
-0 .04 
-0 .09 

convection speed 
1/2/X/U 

0.94 
0.93 

• 0.91 
0.96 
0.92 

Average = 0.93 

(a) 

(b) 

Fig. 15 (a) Instantaneous streamlines at Re = 100 for natural shedding. 
(b) Instantaneous streamlines at Re = 100 and near-wake forcing at the 
excitation frequency, fo = 0.75rs (a lock-in state); from Karniadakis and 
Triantafyllou (1989). 

geometries discussed above. The leading edge of the plate had 
a tapered and sharply pointed configuration. 

These experiments yielded several important conclusions and 
reinforced those previously reached by other investigators. The 
first is a reiteration of the importance of the dynamics of the 
formation region to the overall near-wake flow and the pos
sibility of control and modification of the vortex wake. Second, 
the wake formation is dominated by an absolute instability 
and there is a close relation between the vortex formation 
process and the dynamics of the near-wake Karman vortex 
street. Other conclusions are the importance of Reynolds num
ber to the wake formation, at least over the range examined, 
but that no locking-on or vortex resonance occurs in the pres
ence of the passive wake interference. Nonetheless, the results 
of these and the other experiments and computations discussed 
here have demonstrated the potential importance of both pas
sive and active control to the flow physics of bluff body wakes. 

The downstream vortex spacing or wavelength is a valuable 
and important diagnostic parameter for the state of the spatial 
structure and development of the near-wake. Measurements 
of the spacing for a variety of in-line and cross-flow oscilla
tions, and also for the unforced wakes of stationary cylinders 
were reported originally by Griffin and Ramberg (1976). These 
can be compared to the direct numerical simulations of Kar
niadakis and Triantafyllou (1989) and our recent NRL simu
lations (Hall and Griffin, 1992). The vortex spacing or 
longitudinal wavelength can be employed as a measure of the 
spatial state of the flow as compared to phase plane diagrams 

of the streamwise and cross stream components of the wake 
velocity fluctuations which can be employed comparably to 
assess the temporal state of the near-wake. 

Two examples from Karniadakis and Triantafyllou are shown 
in Fig. 15. The upper instantaneous streamline pattern cor
responds to the unforced wake at Re =100 while the lower 
pattern corresponds to a wake forced by a spatially localized 
acceleration which varied with time in the near-wake vortex 
formation region with normalized amplitude and frequency, 
respectively, of y4=0.10 and f/fso = 0.75, and which decayed 
exponentially in the far field. The center of the disturbance 
was located at x=2, y = 0, measured in multiples of cylinder 
diameter. This is a unique form of control disturbance which 
had not been investigated in any previous work. For the un
forced wake \ = 5d and for the forced wake X = Id, an increase 
of forty percent. A similar example from the NRL perturbed 
flow computations is given in Fig. 6. 

Comparable measurements were made at Re = 190 by Griffin 
and Ramberg (1976). The results are summarized in Table 2. 
The cylinder oscillations were in-line with the flow over a range 
of frequencies near twice the Strouhal frequency (as in Fig. 1) 
and, for the cases shown, a single vortex was shed during each 
oscillation cycle. Thus this basic forced wake pattern shared 
many of the same overall features of the wake forced with the 
cross-flow oscillations. The measured changes in the forced 
wake vortex spacing correspond directly with those from the 
direct numerical simulations; for f<2fs0 the wavelength is 
increased while for/> 2fso the wavelength is decreased as shown 
in Table 2. Extrapolating the measured results in the table to 
the case shown in Fig. 15 using a least-squares straight line 
given by Griffin and Ramberg (1976), the vortex spacing is 
A = 6.2d. This compares reasonably well with the computed 
results of X = ld. The measured vortex spacing for the sta
tionary cylinder at Re = 190 (X = 4.9d) is virtually identical to 
the computed value at Re= 100 (\ = 5d). 

The vortex street wavelengths computed by Karniadakis and 
Triantafyllou and more recently at NRL are compared further 
with measured street wavelengths for both forced and unforced 
conditions in the range of Reynolds numbers from 100 to 2000 
in Fig. 16. The computations fit well with the overall trend of 
the measured data, which show only a very slight dependence 
on Reynolds number in this range. The vertical scale in the 
figure essentially is a normalized form of the convection speed 
of the vortices, or the downstream speed of the vortex cores. 
The constant phase or convection speed is representative of a 
non-dispersive physical system. 
• Several measurements of the vortex phase or convection 
speed, i.e., the speed at which the vortex cores travel down
stream, are given in Table 2. Though there is some scatter, the 
data generally are grouped around the average value of 
t/̂ , = 0.93t/. This gives some evidence that both forced and 
unforced or natural periodic vortex wakes have the same basic 
non-dispersive properties. 

The experiments of Tokumaru and Dimotakis (1991) also 
included measurements of the vortex street wavelength X over 
a wide range of the oscillation Strouhal number Stf=fd/U. 
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Fig. 16 Longitudinal vortex spacing \ld( flnfs„) as a function of Reynolds 
number Re. All of the measurements were made in the wakes of sta
tionary and oscillating cylinders. Data points at Re = 190 and 200 cor
respond to in-line oscillations and flow perturbations with n = 2; all other 
results correspond to cross-flow oscillations (experiments) and near-
wake perturbations (computations) with n= 1. 

LOCK-ON BOUNDARY 

RECEPTIVITY BOUNDARY 

Fig. 17 State selection (amplitude versus frequency) diagram for lam
inar wakes. The plot should only be interpreted in a qualitative sense; 
from Karniadakis and Triantafyllou (1989). 

For the observed range of lock-on where St/=0.3 to 1.0, the 
geometry of the vortex street adjusted in terms of the wave
length A and the frequency / to form yet again an essentially 
non-dispersive street pattern, though there is some slight scatter 
in the measurements. The lateral spacing of the near-wake 
vortex street also decreased with increasing St/ over this lock-
on range. The Reynolds number for these experiments was 
Re =15,000, and some complementary smooth cylinder ex
periments were conducted at a lower Reynolds number of 
Re = 3,300 and with surface roughness added to the cylinder 
at the higher Reynolds number. The results were similar in 
both cases. These observations for the case of active control 
with rotational oscillations confirm and extend the conclusions 
drawn earlier for both forced and unforced wakes. 

Near-Wake Flow Stability 
The introduction of the absolute/convective theory of fluid 

dynamic stability has led to a promising new approach and a 
new theoretical framework for understanding the physics of 
vortex formation and near-wake flow development (Koch, 
1985; Triantafyllou et al., 1986,1987; Monkewitz and Nguyen, 
1987; Rockwell, 1987; Chomaz et al., 1988; Unal and Rock
well, 1988a, b; Ongoren and Rockwell, 1988a, b; Karniadakis 
and Triantafyllou, 1989; Oertel, 1990; Huerre and Monkewitz, 
1990; Rockwell, 1990). A flow is said to be absolutely unstable 

when an initial infinitesimally small disturbance grows expo
nentially in place at the location where it is introduced. In the 
case of a convective instability the initially small disturbance 
is transported or converted away from the point of its intro
duction, leaving behind an undisturbed region of flow. Chomaz 
et al. (1988) have introduced the term global instability. They 
note that the existence of a local absolute instability is only a 
necessary, but not sufficient, condition for the existence of a 
global instability in a shear flow, and that the localized region 
of absolute instability must physically grow to a large size to 
become globally unstable. 

Recent stability calculations based upon computed and 
measured mean velocities in the wakes of stationary circular 
cylinders suggest that the vortex formation region is absolutely 
unstable while the fully-formed vortex street is convectively 
unstable. The vortex formation region is thought to be a com
plex global region of upstream and downstream propagating 
vorticity waves, self-excitation of the flow, and modal com
petition and interaction (Rockwell, 1990). This region of self-
excited oscillations and flow resonance plays an important role 
in frequency selection, and thus in programming and control 
of the flow separation and the overall unsteady flow. More 
extensive stability calculations of this nature may also lead to 
better understanding of bluff body wakes, and their active 
control and modification by any of the means discussed here. 
A better understanding of passive wake control and modifi
cation, e.g., by splitter plates and base bleed, may be achieved 
in the same manner. The most recent and comprehensive dis
cussions of absolute/convective and local/global instabilities 
for spatially developing shear flows, including bluff body 
wakes, are given by Huerre and Monkewitz (1990), Oertel 
(1990), and Rockwell (1990). 

Karniadakis and Triantafyllou (1989) conducted a linear 
stability analysis of the time-averaged flow in the near-wake 
which was derived from their direct numerical simulation of 
the cylinder wake at Re =100. The flow was assumed to be 
locally parallel and slowly varying in the downstream direction. 
The averaged flow was found to be absolutely unstable for 
approximately 2.5 diameters downstream from the cylinder. 
This corresponds generally to the length scale of the vortex 
formation region at subcritical Reynolds numbers below 104 

(Bloor and Gerrard, 1966), a wide range of Reynolds numbers. 
At greater downstream distances the flow is convectively un
stable. Thus the continuous formation of the vortex street is 
thought to be sustained by the near-wake absolute instability. 
Good global agreement was found between the stability anal
ysis and the computation in that the Strouhal number was 
St = 0.179 in both cases. This is slightly higher than most ex
periments (Roshko, 1954; Williamson, 1988), which may be 
due partly to finite grid size and the extent of the computational 
domain, and to the three-dimensional effects which invariably 
exist in a cylinder wake. Williamson (1988) has shown the 
importance of the span wise variation of the cylinder wake flow. 

Summary and Concluding Remarks 
Previous observations of vortex resonance or lock-on for 

bluff body near-wakes which have been accumulated by nu
merous researchers over the years now have been extended to 
several additional types of imposed disturbances of both fun
damental and practical importance—a bluff body in a per
turbed incident flow consisting of a mean flow with a periodic 
component superimposed upon it, rotational oscillations of 
the body, and sound. And the first of these cases has been 
shown to be fundamentally identical, under appropriate con
ditions, to the lock-on or vortex resonance of a cylinder os
cillating in line with an incident uniform flow.The vortex lock-
on results from the periodic flow exhibit a particularly strong 
form of resonance, with a relative perturbation amplitude of 
2AU/LOD = 0.014 resulting in a reduction in base pressure from 
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Cpb= - 1.44 to -1 .85 , or 22 percent, for a circular cylinder 
(Armstrong et al., 1986, 1987). For a circular cylinder oscil
lating in cross-flow, as noted earlier, a peak-to-peak vibration 
amplitude of 2a/d=0.20 to 0.30 is required to provide a com
parable reduction in Cpt, (Stansby, 1976). Conditionally-av
eraged wake velocity measurements by Armstrong et al. (1987) 
have indicated that the strength of the vortices was increased 
by 29 percent and the spacing was decreased by 25 percent for 
the largest perturbation levels of their experiments. 

These are quite remarkable modifications of the near-wake 
flow for such a relatively small perturbation amplitude. Thus, 
seemingly small perturbations of the basic wake flow can pro
duce large changes in vortex strength, base pressure and drag 
on a bluff circular cylinder or other cross-section. Modification 
and control of the basic formation or instability mechanisms 
of the wake thus can provide a means for making substantial 
changes in the near-wake vortex pattern, and possibly even the 
middle- and far-wake patterns as well (Cimbala et al., 1988, 
Browne et al., 1989). 

Karniadakis and Triantafyllou (1989) have characterized the 
state of both the forced and unforced vortex wakes by means 
of a state diagram as sketched in Fig. 17. At a small but finite 
amplitude the transitions corresponding to the upper and lower 
limits of the lock-on are given by two bounding frequencies; 
within these limits only periodic lock-on states exist. Two quasi-
periodic regions are thought to develop at frequencies well 
above and below the lock-on regime, together with chaotic 
states in narrow regions immediately adjacent to the lock-on 
boundaries. These are conceptually similar in overall appear
ance to the vortex resonance or lock-on measurements of 
Koopmann (1967) for cross-flow oscillations of a cylinder, 
reproduced here in Fig. 7, and for the in-line flow perturbations 
and cylinder oscillations shown in Figs. 1 and 2. 

As the threshold amplitude a, is approached, these finite 
regions shrink to a single frequency fe. For cross flow oscil
lations of the cylinder fe =fso while for in-line oscillations of 
the body and periodic perturbations of the mean flow / = 2fs0 

as shown in Fig. 2. The small amplitude perturbations intro
duced by Armstrong et al. (1986, 1987) correspond qualita
tively to those discussed by Karniadakis and Triantafyllou. 
The relatively large amplitude cylinder oscillations and flow 
perturbations investigated by Koopmann (1967), Griffin and 
Ramberg (1974, 1976) and Barbi et al. (1986) and shown in 
Figs. 1 and 7 introduce nonlinearities and complex changes in 
the near-wake flow field as shown by the flow visualization 
studies of Griffin and Ramberg (1974, 1976), Williamson and 
Rashko (1988), and Ongoren and Rockwell (1988a, b). At the 
largest amplitudes of oscillation, highly complex vortex flow 
patterns were observed; and a more extensive kaleidoscope of 
complex vortex patterns over an even wider range of frequen
cies and amplitudes was observed experimentally by William
son and Roshko (1988). 

Further research based upon these new analytical and com
putational approaches described herein is likely to lead to new 
and more complete fundamental understanding of the near-
wake vortex dynamics and vortex lock-on, which until now 
have been studied mostly by using the more traditional mod-
deling approaches combined with experiments. The results dis
cussed in this paper suggest that modification and control of 
the basic instability or formation mechanisms of the wake by 
imposed oscillations, i.e., cross-flow, in-line and rotational, 
incident flow perturbations, and an imposed sound field pro
vide a means for making substantial alterations to the near-
wake vortex pattern, and possibly to the middle- and far-wake 
flow patterns as well which exist relatively far downstream 
from the wake-generating body. 
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Some Aspects of Uncertainty in 
Computational Fluid Dynamics 
Results 
Uncertainties are inherent in computational fluid dynamics (CFD). These uncer
tainties need to be systematically addressed and managed. Sources of these uncer
tainties are identified and some aspects of uncertainty analysis are discussed. Some 
recommendations are made for quantification of CFD uncertainties. A practical 
method of uncertainty analysis is based on sensitivity analysis. When CFD is used 
to design fluid dynamic systems, sensitivity-uncertainty analysis is essential. 

Introduction 
The commonly used word uncertainty means lack of sureness 

or reliability about someone or something. This word also 
means an error, but it does not mean a mistake. In a number 
of endeavors, the value of uncertainty is determined and de
cisions are made based on this value. The following are some 
examples of these endeavors: nuclear reactor analysis (Lewins 
and Becker, 1982), structural engineering (Hart, 1982), ex
perimental measurements (Coleman, 1989), psychology 
(Kahneman et al., 1982) and artificial intelligence (Lemmer 
and Kanal, 1988). Uncertainties in risk assessment and man
agement are of concern to people in various fields (Covello et 
al., 1987): decision analysts, aircraft designers, safety engi
neers, epidemiologists, toxicologists, chemists, biologists, 
economists, political scientist, sociologists, and lawyers. In 
computational fluid dynamics (CFD), uncertainties are not 
systematically addressed and managed. (CFD is used herein to 
encompass a range of related areas, in which computations 
are done, such as computational aerodynamics, combustion, 
rarefied gas dynamics, and computational aerothermodyn-
amics.) The objective of this paper is to identify uncertainties 
in CFD, discuss some aspects of uncertainty analysis, and to 
make some recommendations to quantify these uncertainties. 
Although this objective is met using examples taken from com
putation of hypersonic flight estimates, the essence of the pre
sented discussions is applicable to all speed regimes. 

The significance of uncertainty in experimental measure
ments is illustrated by the "Statement of Experimental Un
certainty" in every issue of the Journal of Fluids Engineering. 
This statement requires that "all papers considered for pub
lication in this journal must contain an adequate statement of 
the uncertainty of experimental data." This journal also pro
vides guidelines for estimating and presenting uncertainty. On 
the other hand, a statement of computational uncertainty along 
with standards for quantifying and presenting uncertainties is 
yet to be made. Celik (1989), Ferziger (1989), and Roache 
(1990) have attempted recently to address uncertainty due to 
numerical accuracy. But computational fluid dynamics un

certainties need to be addressed. Further, the computational 
fluid dynamicists are often concerned only about computation 
rather than about computation and fluids dynamics, abdicating 
responsibility for the latter to the experimenters. 

In the field of reactor analysis, because of the responsibility 
placed on computer codes, a systematic effort was made to 
develop a practical uncertainty analysis method beginning in 
the early 1970s (Ronen, 1988). A frequently used method of 
conducting uncertainty analysis is based on sensitivity analysis. 
Once the uncertainty is determined, the credibility of the com
puted results can be established. Further, it is possible to design 
with a margin built in to reduce the risk associated with this 
uncertainty. Likewise, it is recommended that a systematic 
effort is required in CFD, particularly for design application 
which is the ultimate utility of CFD. 

Use is made of examples taken from computation of flight 
estimates for the manned, single-stage-to-orbit space plane 
with an air-breathing propulsion system (Williams, 1988; 
Mehta, 1990a; Barthelemy, 1989; and Gregory, 1989a). This 
plane depends on two critical technologies related to its com
ponents: an engine that can propel this plane at hypervelocities 
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with little or no rocket assist and lightweight structural ma
terials that can withstand high temperatures and high stress. 
On the other hand, among the various design tools, CFD is 
the only critical one at Mach numbers above eight. This is 
because of fundamental difficulties in creating complete flight 
simulations in ground-based facilities (whether existing, to-be-
refurbished, or planned) (NRC, 1988; NRC, 1989; and Harsha 
and Waldman, 1989) and because rules for extrapolations from 
ground-based tests to flight conditions are difficult to develop 
and verify. On the other hand, it is the temperature require
ments imposed on structural materials that are primarily de
termined by the fluid dynamics. The common bond between 
the engine technology and the material technology is the ne
cessity of knowing the fluid dynamics at flight conditions. This 
knowledge is sought primarily through CFD. Therefore, the 
CFD technology is a critical enabling technology that the space 
plane relies on. 

Uncertainties in Computational Fluid Dynamics 
As the phrase indicates, computational fluid dynamics en

compasses two disciplines, computation and fluid dynamics. 
Together, these disciplines are used to numerically simulate 
the real fluid dynamics through modeling. This numerical sim
ulation is acceptable if it accurately reproduces the reality. 
Frequently, this cannot be achieved because both fluid dy
namics and computation contain uncertainties that affect the 
computed results. The reason for this situation is obvious: 
numerical simulation attempts to describe natural reality, but 
by definition simulation is not reality. Moreover, an additional 
uncertainty is introduced by the human element. These un
certainties are summarized in Fig. 1, and they are discussed 
below. 

The lack of knowledge about the degree of credibility (con
fidence level) of results generated by a computer code intro
duces uncertainties and that about proper usage of this code 
creates mistakes. These uncertainties are not treated separately 
as they are related to the CFD uncertainties. The credibility is 
established by addressing the computational fluid dynamics 
uncertainties and quantifying them. This process of establish
ing credibility also determines reliability and limits of appl
icability of the code. 

Fluid Dynamics Uncertainties. There are three sources of 
uncertainties related to physics and chemistry. First, the un
certainty is caused by isolation of fluid dynamics phenomena, 
either deliberate or unavoidable. In order to understand certain 
phenomena, it is customary to set up a unit (that is, a bench
mark or building-block) problem demonstrating these phe
nomena, assuming that there is either absolutely no influence 
or perfectly known influence on these phenomena of other 
natural phenomena. Sometimes lack of knowledge leads to 
isolation of phenomena. On the other hand, unavoidable iso
lation of phenomena takes place when it is not possible to 
address all relevant phenomena simultaneously. In either case, 
an approximation or an uncertainty is introduced. Second, the 
uncertainty is caused by the insertion of extraneous phenom
ena. When the reality of interest either cannot be simulated 
or is difficult to simulate, sometimes an alteration other than 
a simplification (isolation) of this reality is made so that this 
modified reality can be simulated. This introduction of extra
neous phenomena may perturb the manifestation of existing 
phenomena. Third, the uncertainty is caused by improper mod
eling of the phenomena under consideration. A model describes 
reality in mathematical and/or empirical terms. The uncer
tainty is related to the validity of the model. Specifically, the 
sources of modeling uncertainty are the following: (i) The 
phenomenon under investigation is not thoroughly under
stood, (ii) Parameters used in the model are known with some 
degree of uncertainty, (iii) Appropriate models are simplified 

introducing uncertainty, (iv) An experimental confirmation of 
the model is not possible or not available. 

In the design of the space plane,'' aeropropulsion dynamics'' 
is the most significant discipline. It includes aerodynamics, 
aerothermodynamics, propulsion, and aerodynamic-propul
sive integration. Five phenomena are critical in aeropropulsion 
dynamics at hypervelocities: boundary layer characteristics, 
shock wave/boundary layer interaction, mixing of fuel and 
air, chemical kinetics, and low density effects at intermediate 
(say from 40 km to 80 km) and high (above 80 km) altitudes. 
Each of these phenomena may be further fragmented or iso
lated by imposing some constraints on them. The following 
are some examples: (i) The boundary layer transition from a 
laminar to turbulent flow is considered to depend on Mach 
number, Reynolds number, and the wall temperature without 
considering chemical kinetics, (ii) Different types of shock 
wave/boundary layer interaction phenomena are identified as 
incident shock interaction, compression corner interaction, 
corner flow interaction, glancing interaction, shock train in
teraction, shock/shock interaction, and shock/cooling layer 
interaction. Some of these interactions may occur side by side, 
which may cause them to influence each other, (iii) The effect 
of combustion instability on the mixing process is not consid
ered, (iv) In chemical kinetics, an idealization is based on which 
initiation, branching, and termination reactions are considered 
between H2 and 02. (v) The low-density effects in the nose 
region and leading-edge region are neglected when the rest of 
the flow can be handled by the continuum, no-slip assumption. 

A consequence of the isolation of phenomena illustrated in 
example (v) is explained as follows. There may be a mixed 
flow, continuum transitional flow around the nose region and 
continuum flow downstream of this region. The shock struc
ture and chemical kinetics taking place in this region would 
have an impact on transition location, the length of the tran
sition region, and the characteristic of the flow entering the 
engine. 

Isolation of phenomena may also occur under the following 
condition: Design problems involve more phenomena than 
those considered in unit problems. Modeling of phenomena 
associated with unit problems and those associated with design 
problems may differ. The overall effect of the interaction of 
phenomena associated with different unit problem is unlikely 
to be simply additive. 

Since the ground-based facilities cannot fully simulate hy-
pervelocity flight conditions (NRC, 1988; NRC, 1989; and 
Harsha and Waldman, 1989), they may produce phenomena 
other than those of interest. An example of extraneous phe
nomena uncertainty is the simulation of ground-based com-
bustor flow with chemical reactions in addition to those 
expected under flight conditions. 

There are various sources of uncertainty of modeling: the 
basic flow equations, transition model, transition length model, 
relaminarization model, turbulence model (momentum and 
heat fluxes), relationship between viscous stress and strain rate, 
relationship between the first and second coefficient of vis
cosity, chemical reaction rates, vibrational and radiation ex
citation rates, surface chemical reaction rates (surface catalysis), 
gas and transport properties, and upstream flow conditions. 
The modeling uncertainty includes the uncertainty of the range 
of validity of the model. The term "basic flow equations" 
considers basic models for continuum, continuum transitional, 
and rarefied flows, dimensionality, etc. Further, transition and 
turbulence modeling of both attached and free shear layers are 
considered. 

Computational Uncertainties. Once the modeling equa
tions (which include the initial and boundary conditions) are 
determined, numerical algorithms are developed to solve them 
and computer codes are constructed. There are two sources of 
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uncertainties of computation: equivalence and numerical ac
curacy. Further, a computer code may contain mistakes. 

The computational model needs to describe the "reality" 
contained in the theoretical (mathematical and/or empirical) 
model. A departure from equivalence of the two realities in
troduces errors. At times, this departure is caused by the need 
for an efficient and robust numerical algorithm. Examples of 
this departure are the following: (i) The fitting of strong shock 
waves, such as the bow shock wave at intermediate and high 
altitudes, would not resolve.the shock structure, thereby al
tering the flow around the nose and the flow downstream of 
it. (ii) Numerical algorithms for complex problems often use 
the one-dimensional Riemann solver without taking into ac
count multi-dimensional wave propagation. Under certain con
ditions, these algorithms may produce a contact discontinuity 
instead of a shock wave, and vice versa, (iii) The computational 
model may produce an asymptotic (steady-state, periodic, or 
chaotic), global solution that is a spurious solution of the 
theoretical model. Some numerical algorithms (time discreti
zation schemes and/or nonlinear schemes for spatial discre
tization schemes) produce such solutions (Yee et al., 1990). 
Nonequilibrium, hypervelocity flows are typically governed by 
reaction-convection-diffusion equations containing nonlinear 
source terms. These equations may exhibit a nonlinear dy
namical behavior; for example, they may have well-separated 
multiple solution. The discrete (computational) model should 
be able to determine the solution that corresponds to that of 
the differential (theoretical) model. 

There are three sources of uncertainty related to numerical 
accuracy. First, an algorithm consists primarily of an approx
imation of the mathematical model owing to discretization. In 
the limit of the spatial and temporal grid sizes approaching 
zero, a consistent discretization would not have any discreti
zation errors. In practice, this limit cannot be taken. For in
stance, algorithms for combustor flows may modify the 
combustion phenomena owing to numerical dissipation (dif
fusion). Further, the solution procedure for the inviscid part 
of the Navier-Stokes equations requires numerical damping 
(see for example Mehta and Lomax, 1982, and Hanel, 1989), 
thereby influencing viscous solutions. Second, a solution pro
cedure used in an algorithm may contain an approximation. 
For example, the solution accuracy is dependent on the con
vergence criteria used in any iterative procedure. Third, tech
niques used for presentation of computed results is a source 
of uncertainty. An example is the presentation and interpre
tation of results using graphical techniques, which have in
herent errors. (See also Buning, 1988). 

A computer code can be a source of errors. The logic of the 
code involves the following: consistency of computer instruc
tions with the numerical algorithm (model) and data manage
ment (internal and input/output). Coding errors are mistakes, 
not uncertainties. These mistakes can be eliminated by either 
checking the logic or by developing independently another code 
to confirm the results. (Computer hardware errors are not 
considered.) 

Human Factor Uncertainties. There are four types of hu
man factor uncertainties: phenomenon of creative overbelief 
(Morkovin, 1974), uncertainties about definitions, uncertain
ties about risk assessment, and uncertainties in decision mak
ing. The first two types can be eliminated with systematic 
questioning, whereas the latter two types of uncertainties are 
difficult to eliminate. These two principally arise when CFD 
is used in the design process. 

Usually a person develops an emotional attachment to his 
creation which tends to visualize this creation as a reality based 
on insufficient evidence. The competitive market generally en
courages overselling and fostering of creative overbelief. Un
certainties about definitions are caused by ambiguity concerning 
meaning and interpretation. Two examples are discussed be

low. Uncertainties about risk assessment arise from disagree
ments concerning what constitutes a risk and what is considered 
to be an acceptable risk. For example, what are acceptable 
risks due to fluid dynamic uncertainties and computational 
uncertainties within the flight envelope of the space plane? 
Uncertainties in decision making arise because of insufficient 
information. For example, how does one determine some of 
the fluid dynamics and computational uncertainties without 
flight test data? 

Consider the following definition of CFD code calibration 
reported by Bradley (1988): "The comparison of CFD code 
results with experimental data for realistic geometries that are 
similar to the ones of design interest;" this comparison is 
"made in order to provide a measure of the code's capability 
to predict specific parameters that are of importance to the 
design objectives without necessarily verifying that all the fea
tures of the flow are correctly modeled." In this definition, 
the phrase "to provide a measure of the code's capability to 
predict" is ambiguous. A comparison between computed re
sults and experimental data for a design-like geometry is not 
sufficient to justify declaring the code to be a calibrated code. 

Referring to definitions of code validation and code cali
bration as reported by Bradley (1988), Marvin (1989) states 
the following: "Such definitions refer mainly to the complete
ness of the process. For the purposes of this paper, validation 
will refer to the overall process with the understanding that 
completeness will be evidenced in the depth and scope of car
rying out the process." This quote illustrates uncertainty caused 
by interpretation and that due to meaning. The definition of 
code validation (Bradley, 1988) explicitly contains the phrase 
"validation can occur only when." This definition spells out 
the conditions under which a code can be considered to be a 
validated code. However, the above quote interprets code val
idation to be a process. Having different meanings of "vali
dation" introduces uncertainties. When a claim is made that 
"code validation is done," what does one understand by it? 
The code may have undergone the process of validation or the 
code has achieved the status of being a validated code. There 
must be a generally accepted meaning of validation. On the 
other hand, consider the second sentence of the above quote, 
which defines validation. In this definition, the following phrase 
is meaningless: "completeness will be evidenced in the depth 
and scope of carrying out the process." What is the status or 
credibility of a code, if completeness is not achieved? In ad
dition to this ambiguity, "carrying out the process" does not 
necessary lead to a validated code. 

Uncertainty Analysis 
Generally, uncertainty analysis is defined as the analysis of 

the effect of uncertainties involved in all stages of a process 
on the final responses. This process, for example, may be an 
experimental process or a computational process with the re
sponses being experimental data or computed results, respec
tively. With respect to the computational process, there are 
two approaches to conducting the uncertainty analysis: ex
perimental and computational. In CFD, the experimental ap
proach is used more often than the computational approach. 
In nuclear reactor analysis, the computational approach is 

.extensively used (Ronen, 1988). The other examples are air 
quality studies for protecting the environment (for example, 
Gelinas and Vajk, 1979) and nuclear waste isolation studies 
(for example, Worley, 1987 and Maerker,1988). Both ap
proaches need to be fully and systematically exploited. They 
are equally essential for establishing the credibility of the CFD 
results. 

Experimental Approach. Since CFD numerically simulates 
fluid dynamics reality through modeling, the obvious uncer
tainty analysis method consists of comparisons between com-

540 / Vol. 113, DECEMBER 1991 Transactions of the ASME 

Downloaded 02 Jun 2010 to 171.66.16.104. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



puted results and measurements. This experimental approach 
has its own limitations, primarily the following: the capability 
for conducting relevant tests, measurement uncertainties, and 
insufficiency of data. 

Uncertainties are also inherent in experimental fluid dynam
ics. Both fluid dynamics and measurement contain uncertain
ties. The fluid dynamics uncertainties arise when ground-based 
testing is done is simulate flight reality. Two sources of un
certainties related to fluid dynamics are phenomena of isolation 
and extraneous phenomena. In case of measurements, ground-
base or flight, there are interference uncertainties and data 
uncertainties. Unless these measurement uncertainties are 
known, uncertainties of computed results cannot be deter
mined with test data. (More important, the credibility of a 
design based on test data whose credibility is not established 
by indicating fluid dynamics and measurement uncertainties 
is questionable.) Further, there are uncertainties introduced 
by the human element, in particular those related to creative 
over belief and definitions. An example of the former is the 
attitude that measurements are the reality. An example of the 
latter is the false assignment of significance to what has been 
measured. (Uncertainties due to risk assessment and decision 
making need to be considered, if test data are to be used for 
design purposes.) 

The fluid dynamics uncertainties are illustrated as follows. 
The chemical phenomena associated with air under flight con
ditions are not addressed when ground-based aerodynamic 
tests are conducted in a nitrogen wind tunnel at high hypersonic 
Mach numbers. Sometimes the heat transfer boundary con
dition in ground-based facilities are different from those ob
served in flight. In some instances, the ground-based facilities 
introduce phenomena that are not likely to occur in flight. For 
example, alterations may be caused in the flow owing to effects 
of additional chemical species, unsteadiness, and disturbances 
during propulsion tests. Moreover, the interference or inter
action between the test device and the flow of interest and the 
manner in which measurements are taken influence the meas
ured quantities, introducing interference uncertainties. There 
are two types of interference uncertainties associated with the 
measuring system, system disturbance uncertainties and sys
tem-sensor interaction uncertainties. 

In most of the existing hypersonic ground-based facilities, 
flow conditions upstream of the test section (freestream con
ditions) are not sufficiently well known (NCR, 1989). Without 
knowing the freestream conditions, meaningful computations 
cannot be done for comparison with test data. Under such 
circumstances, the CFD that' 'confirm" the ground-based tests 
may be uncertain for estimating flight quantities. Another 
source of uncertainty is the process of extrapolating from 
ground-based test conditions to flight conditions. The result 
of an extrapolation involving a change in fluid dynamics is 
more uncertain that that of an interpolation without any such 
change. 

Data uncertainties are the residual errors after all corrections 
have been made to the measured quantities. The uncertainty 
in a measurement is generally defined as the difference between 
measured value and the true value of the quantity being meas
ured. There are three types of uncertainties: fixed, random, 
and variable but deterministic (Moffat, 1988). These uncer
tainties are also categorized as bias (fixed) and precision (ran
dom and variable but deterministic) uncertainties. A standard 
measurement uncertainty method has been recommended by 
a number of organizations such as SAE, ASME, AIAA, and 
JANNAF. Discussions of measurement uncertainty analysis 
may be found in several references, such as: Coleman (1989), 
Moffat (1988), ANSI/ASME Standards on Uncertainty (1983 
and 1985), and Thompson et al. (1987). 

If the levels of measurement uncertainties are acceptable and 
there is an acceptable level of agreement between the computed 
results and measurements, then the computer code providing 

these results is credible. This means that both the fluid dy
namics model and numerics are satisfactory. If the level of 
agreement is not acceptable, then the code may still be ac
ceptable. A possible source of this unacceptable level of agree
ment is the manner in which the code is being used. 
Alternatively, fluid dynamics and/or numerics is unsatisfac
tory and/or the numerical algorithm (model) may not be pro
grammed properly. What are considered as "acceptable" com
puted results is determined by the accuracy requirements for 
these results. These are set by the utility of these results. When 
the experimental approach is used, the uncertainties in the 
computed results are the differences between measurements 
and computed results. This definition assumes that the com
puted results are numerically accurate. 

The experimental approach by itself is of limited utility for 
flight estimates because of the following reasons: (i) There is 
insufficiency of data, ground-based or flight. It is not always 
possible to measure all quantities of interest, those necessary, 
and as often as required for a proper uncertainty analysis, (ii) 
Sometimes the relevant tests are not possible to carry out. 
Further, ground-based facilities may introduce fluid dynamics 
uncertainties, as illustrated above, (iii) This approach does not 
account for uncertainties in computation, that is, the accuracy 
of the computed results without a consideration of the exper
imental data. These uncertainties need to be identified when 
computed results are compared with measurements. Almost 
invariably, an excellent comparison between computed results 
and measurements is used to justify the validity of the com
putational model, without demonstrating, for example, the 
effect of grid refinement on the computed result, (iv) The 
experimental approach provides some, but not a sufficient, 
guidance for obtaining computed results with the same un
certainties or accuracy at conditions other than those consid
ered, but with the same fluid dynamics. 

Computational Approach. The second approach to con
ducting the computational fluid dynamics uncertainty analysis 
is the computational approach. This approach essentially does 
not utilize test measurements. In this case, uncertainties in 
modeling, uncertainties caused by input parameters, uncer
tainties in equivalence, and uncertainties in numerical accuracy 
are determined separately. Modeling uncertainties are generally 
conducted by those concerned with fluid dynamics. Input un
certainties are usually investigated by those interested in design 
and safety. Equivalence uncertainties and accuracy uncertain
ties are mainly of concern to people who are developing al
gorithms. However, all of these uncertainties are important. 
For example, the determination of modeling uncertainties is 
inconclusive without accuracy uncertainties. The theoretical 
model, the computational model, and the input parameters fix 
the accuracy that can be obtained. 

When a test confirmation is not possible or available, it is 
sometimes possible to obtain an estimate of the uncertainty 
by computing the result in question with different models. For 
example, the intermediate and high altitude shock-on-shock 
heating on a cowl lip may be investigated by the Navier-Stokes 
(NS) equations, continuum equations more advanced than the 
NS equations (different forms of the Burnett equations), and 
the Boltzmann equation. The sensitivity of different transition 
models on heat transfer and skin friction and consequently on 
the take-off gross weight (TOGW) of the space plane can be 
studied to determine the uncertainty due to transition model. 
Similarly, uncertainties of turbulence models may be studied 
by considering models of increasing complexity. Although 
comparative studies involving different turbulence models are 
being done from the point of view of fluid dynamics in unit 
problems, they need to be done also for design-like problems 
and for determining the uncertainties in the design, for example 
in the TOGW. 

Sometimes a simplified model is used although an accurate 
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model is available. For example, the parabolized NS equations 
may be used rather than full NS equations. Another example 
is the use of a smaller set of finite rate (chemical) reactions 
than those considered necessary. There are two ways of esti
mating uncertainties resulting from the use of a simplified 
model. The obvious procedure for obtaining the uncertainties 
is to compute using both the simplified and complex model 
and determine the difference between the two sets of results. 
Another way is to determine, if feasible, the perturbation op
erator, which is the difference between the complex model 
operator and the simplified model operator. Then it may be 
possible to obtain the uncertainty based on the perturbation 
theory (Gandini, 1988) or functional analysis (Ronen, 1988). 

A practical uncertainty analysis method for determining the 
uncertainties of the input parameters is based on sensitivity 
analysis. These parameters include the computational model 
parameters and specifications, for example, grid spacing, tur
bulence model constants, the order of numerical scheme, and 
initial and boundary conditions. A sensitivity is a measure of 
the influence of a given input parameter on the computed 
results, primarily performance estimates in design applications. 
Generally, sensitivity analysis is defined as the procedure to 
determine sensitivities of input parameters on output results. 
This analysis provides guidance with respect to the identifi
cation of the important contributors to uncertainty, helps to 
assess confidence levels in computed results, and assists in 
further development of the computational model. This analysis 
is particularly useful when large computer codes are used for 
modeling complex phenomena. It is being used, for instance, 
in problems exhibiting phenomena associated with heat and 
mass transfer, chemical kinetics, and nuclear reactor physics. 
Further, sensitivity analysis can be used in selecting solution-
adaptive space and time steps (see for example, Reuven et al., 
1987). 

Sensitivity analysis is crucial for establishing the credibility 
of a design and for design optimization. Assume that the com
putational model is appropriate. The acceptability of computed 
performance estimates is determined by the sensitivities of 
specifications to these estimates for the system under consid
eration. The requirements of acceptable accuracy for these 
estimates are set by their sensitivities to uncertainties in com
puted estimates. Some examples of sensitivities of space plane 
designs to performance estimates are discussed by Gregory 
(1988), Mehta (1990a), and Gregory (1989b). It is relatively 
convenient to conduct sensitivity analysis and design improve
ments with computers, but rather difficult to do so with test 
facilities, ground-based or flight. 

Different methods are available for conducting sensitivity 
analysis: the brute force method, statistical methods, and de
terministic methods. In the brute force method with N input 
parameters, a linear sensitivity and a nonlinear sensitivity, 
respectively, require N+ 1 and 2N2 + 2N+ 1 different com
puter solutions in order to determine sensitivities of one com
puted result. The other two methods greatly reduce the number 
of solutions needed. The response surface method, the Monte 
Carlo method and the Fourier Amplitude Sensitivity Test are 
examples of statistical methods. The adjoint method is an 
example of a deterministic method. Once the sensitivities are 
determined the uncertainty analysis is carried out to obtain 
uncertainties. Further, it is possible to obtain uncertainties in 
a new system, close to that in which uncertainties are known, 
without conducting the uncertainty analysis for this new sys
tem. The theoretical basis for the various sensitivity analysis 
methods and the uncertainty analysis is given in the book 
entitled Uncertainty Analysis and edited by Ronen (1988). The 
application of these sensitivity-uncertainty analysis methods 
to computational fluid dynamics is a new research activity. 

Two major concerns of people who are developing numerical 
algorithms are the equivalence between theoretical and com
putational models and about computational accuracy. Uncer

tainties due to a lack of this equivalence and those due to a 
lack of numerical accuracy are rarely quantified for equations 
other than model equations used in the development of nu
merical methods. The only way the former uncertainties can 
be determined is by comparing two computed results, one with 
equivalence and one without equivalence. The latter uncer
tainties related to discretization is done by computing grid-
independent results. A grid sensitivity analysis provides the 
sensitivity of the computed results to the grid size. But the 
Taylor series analysis for obtaining the leading truncation terms 
due to discretization does not quantify uncertainties. Algo
rithms to solve ordinary differential equations usually contain 
relative error estimates. These algorithms are not of concern 
here. 

A Procedure for Estimating the CFD Uncertainty 
Before CFD uncertainties are estimated, the purpose for 

determining CFD results must be established and a statement 
of criteria for a successful computation must be formulated. 
For example, the purpose may be the use of results in a design 
process and the statement of criteria may include the level of 
uncertainty that may be acceptable for fulfilling the purpose 
of the computation. Subsequently, the various sources of rel
evant CFD uncertainties need to be identified and estimated, 
as discussed previously. 

Both computational and experimental approaches for es
tablishing the credibility of CFD results are used as follows. 
First, the computational approach is used to determine the 
computational uncertainties. Then the experimental approach 
is undertaken to determine the uncertainties resulting from 
physical modeling by comparing these results with measure
ments that incorporate known measurement uncertainties and 
for the same flow conditions. These measurements may be 
related to unit, benchmark, or design-like problems or to flight 
problems. Only measurements related to problems of interest 
allow modeling uncertainties to be determined directly. If there 
are no measurements available for the flows of interest, fluid-
dynamics uncertainties of the computed results are determined, 
as suggested previously while discussing the computational 
approach. Those models, which have been validated, should 
be shown to be applicable to the flows of interest. Further, 
uncertainties are sometimes associated even with these vali
dated models. Whether these uncertainties can be transferred 
to the problem of interest needs to be investigated. When 
measurements are not available and the computational uncer
tainties are determined but the fluid-dynamics uncertainties 
are hard to determine, then a subjective process of establishing 
the credibility is carried out by submitting the results to a team 
of experts for evaluation. 

In the field of nuclear reactor analysis, numerous examples 
are available to illustrate how sensitivity and uncertainty anal
ysis may be carried out for determining uncertainties due to 
input parameters (Ronen, 1988). Only one study appears to 
be done in the field of computational fluid dynamics. Finley 
(1990) has illustrated quantification of CFD uncertainties and 
the sensitivity of a design to these uncertainties, following some 
suggestions presented by Mehta (1990b). Finley has presented 
a statistical technique for quantifying the credibility level in 
CFD drag predictions and determined the effect of this cred
ibility on the space-vehicle fuel fraction required to achieve 
orbit. 

Concluding Remarks 
A consideration of the computational accuracy uncertainty 

only partially addresses computational fluid dynamic uncer
tainties. These uncertainties are related to both computation 
and fluid dynamics parts of computational fluid dynamics. 
These are introduced by a lack of equivalence of theoretical 
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and computational models, unsatisfactory computational ac
curacy, isolation of fluid dynamics phenomena, extraneous 
phenomena, improper modeling of phenomena, and by the 
human element. These uncertainties need to be addressed sys
tematically and properly managed. There are two approaches 
of uncertainty analysis, experimental and computational. Both 
of these are equally important. In the experimental approach, 
measurement uncertainties must be known for determining the 
uncertainties in the computed results. In the computational 
approach, the use of sensitivity-uncertainty analysis is sug
gested. Although these aspects of uncertainty in computational 
fluid dynamics are discussed with examples taken from hy-
pervelocity aeropropulsion dynamics problems of space planes, 
the essence of this discussion is applicable to other speed re
gimes and to other fluid dynamic systems. The credibility of 
CFD codes is established by code certification (Mehta, 1990a), 
which is a process for eliminating mistakes in codes and for 
determining their reliability and applicability. 

The ultimate utility of CFD is in the design of fluid dynamic 
systems. In order to reduce uncertainties in CFD results used 
for design, the sensitivity of computed performance estimates 
to CFD uncertainties need to be quantified. In other words, 
the sensitivity-uncertainty analysis is essential for developing 
credibility of any design and for defining a safe design margin 
to account for uncertainties. 
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A Numerical Model to Predict 
the Nonlinear Response of 
External Flow Over Vibrating Bodies 
(Planar Flow) 
A model is developed to simulate two-dimensional laminar flow over an arbitrarily 
shaped body, a portion of which is subjected to time varying harmonic motion. The 
model is tested by comparison to previous numerical simulations for flow over a 
square cavity, oscillatory flow through a wavy channel and boundary layer flow 
along a flat plate. The model is applied to predict the flow over a flat plate with a 
section forced in simple sinusoidal motion. The dimensionless vibration amplitude, 
H0, and the Reynolds number, Re are maintained at 0.1 and 1000, respectively. The 
Strouhal number, St, defined as the ratio of the flow advective time scale to the 
plate oscillation period, is varied in the range 0.0 < St < 1.0. The friction and 
pressure coefficients over the vibrating portion of the body are analyzed using Fast 
Fourier Transform techniques. For low frequency vibrations (low Strouhal number) 
the pressure and friction coefficients match the steady state results for flow over a 
fixed sinusoidal bump. A small amplitude pressure wave generated by the oscillating 
plate propagates downstream with the flow. For high frequency vibrations (high 
Strouhal number) the pressure and friction coefficients over the vibrating portion 
of the body deviate from the steady state results and a high amplitude pressure wave 
propagates downstream. The pressure at one chord length upstream is also affected. 
As St increases the flow becomes highly nonlinear and harmonics appear in the 
downstream velocity and pressure fields. The nonlinearity is controlled by the con-
vective acceleration term near the vibrating plate surface. 

1 Introduction 
Engineering applications of unsteady boundary layers are 

numerous and of great importance in hydro and aero dynamics 
(Telionis 1981). Machines which operate inside a body, such 
as a submarine or torpedo, may cause a part of the body surface 
to vibrate at varying frequencies and modes. It is not generally 
understood how these vibrations affect the fluid flows over 
the surface of the vibrating body. In many cases of techno
logical interest, solid boundaries appear to play a direct role 
in the sound generation process and their presence often results 
in a large increase in the radiated sound (Goldstein, 1974). 

There is little information available to understand the proc
ess of sound generation if the perturbations that arise in the 
flow come from flexible boundaries (e.g., vibration of the 
body) rather than from the flow itself (e.g., turbulent flow). 
Most of the early work focussed on the interaction of free 
stream fluctuations with a stationary body. Lighthill (1954) 
derived the unsteady boundary layer equations using a small 
perturbation theory for fluctuations imposed on the free stream. 
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Most of the subsequent investigations of this type of problem 
are based on expansions in powers of wL/U, where oi is the 
angular frequency of fluctuations in the fluid, L the charac
teristic length of the body, and U is the velocity of mean flow 
over the body. Expansions for small or large values of this 
parameter were carried out by numerous investigators (Tel
ionis, 1981). 

Telionis (1981) thoroughly reviewed unsteady boundary lay
ers for separated and attached flows. In most of the research 
work summarized in this review, Prandtl boundary layer equa
tions were used. The equations were solved using small per
turbation theory. These methods however cannot be used for 
large body fluctuations and arbitrary shapes or for high Reyn
olds numbers where the interaction between the outer inviscid 
flow and inner boundary layer (Carter, 1975) may be quite 
significant. 

Hurlburt (1978) developed a numerical model of fluid-struc
ture interaction for a rigid circular cylinder in forced motion 
using the Marker and Cell method. This method is compu
tationally inefficient and alternate schemes are presently avail
able to simulate the flow over arbitrarily shaped bodies (Fasel, 
1980). 

Very little information is available on the response of the 
external laminar or turbulent flow to the unsteady vibrations 
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of the outer surface of the body. In this paper, we focus our 
attention on developing a model to study the response of the 
fluid flowing externally over a body at low to moderate Reyn
olds numbers when a portion of the body surface is vibrating 
at high amplitudes and Strouhal numbers. 

2 Mathematical Formulation 
In the present work, the fluid-structure interaction problem 

is decoupled and the hydrodynamic region is solved using the 
two dimensional incompressible Navier-Stokes equations and 
conservation of mass equation in an x-y coordinate system, 
formulated in terms of vorticity and stream function. The 
flexible structure influence comes through the know time de
pendent boundary condition at the wall. The physical domain 
is shown in Fig. 1(a). 

The flow equations and the associated boundary conditions 
are described in detail in Venkat (1991), only a brief description 
of the formulation is given here. The governing equations, in 
dimensionless form, are given by 

dij/ do) 1 

dx dy Re 

doi d\l/doi 
— + — 
dt dydx 

d2o> dV 
d^dy2 (1) 

d2\{, d2yjj 

d^dy2 

The dimensionless variables (lower case) are defined as: 

(2) 

X Y 
x=—,y = ~, u-

u_ 
u' 

V 
v = —,p-

put 
TU„ TL . * _ LUm fL 

t = ——, oi = —, t = jrj, Re = and St = — 

The velocity profile for a given Reynolds number at the 
upstream boundary is calculated using the Blasius equation 
(White, 1991) assuming that the leading edge of the plate (sec
tion FA) is located at a distance, xs from the entry region of 
the model domain. In the present analysis, xs is made equal 
to 1. Top boundary (section FE) is kept sufficiently far away 
such that u = 1 and co = 0 (Fletcher, 1988). An alternate 
frictionless "wind tunnel" boundary condition is to specify u 
= 1 and v = 0 on FE. This effectively imposes a Dirichlet 
boundary condition ^ F E = ^F- As long as FE is sufficiently 
far from the vibrating section the global solution will be rel
atively insensitive to the particular boundary condition spec
ification on FE. The normal second or higher order derivatives 
of stream function and vorticity are assumed zero at the down
stream boundary (section DE; Fletcher, 1988). 

x = 0 

y - y 

A" 

INVISCID REGION 

VISCOUS REGION 

Y 

X = 0 Surface of the plate 

y-° 
• Vibrat ing por t ion of the plate 

a) Physical Plane 

<Hii 

<K, 

y , 0 

max 
5̂ 5 max 

d <H 

b) Computational Plane 

Fig. 1 Physical and computational planes for viscous flow over a vi
brating body 

On the plate surface, a section vibrates in simple harmonic 
motion (section BC). The equation for plate deflection is given 
by 

yJx,t) = H0 Sin (2wtSt) Sin (nirx) xL.E.<x<xr.E. (3) 

On the remainder of the plate (sections AB and CD) 

yw(x,f) = Q.O 0<x<xL£, andx T . E .< i<x r n a x (4) 

The stream function on the vibrating section of the plate is 
calculated by integrating the velocity of vibration along the 
plate surface. Simultaneously the derivative of the stream func
tion in the y direction is set to zero to satisfy the no slip 
boundary condition (d\j//dy = 0). On the rest of the plate surface 
the stream function is constant and d\j//dy is zero. There are 
several methods available to handle the indirect boundary con-

N o m e n c l a t u r e 
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dition for wall vorticity (Roache, 1972; Peyret and Taylor, 
1983; Fletcher, 1988). For problems solved with numerical 
mapping, Isreli (1970), Thames (1975) and Ehrlich (1981) used 
a coupling procedure between the wall vorticity and the no 
slip boundary condition. In the present approach we followed 
Ehrlich's approach to determine wall vorticity. 

Since there is a moving boundary on the body surface, a 
boundary fitted coordinate system was selected (Thompson, 
1982) for numerically generating the grids and subsequently 
solving the time dependent flow problem. This transformation 
allows problems with time dependent boundaries to be solved 
with relative ease (Wang, 1986 and Venkat 1987). The trans
formed grid and flow equations and the associated boundary 
conditions are given in Venkat (1991). 

3 Numerical Method 
The Line Gauss Seidel method of Napolitano and Walters 

(1986) is adopted for the present numerical simulations. The 
flow and the grid generation equations in the transformed plane 
are discretized using second order finite differences and the 
resulting algebraic equations along with the transformed 
boundary conditions (Venkat, 1991) are solved using a Thomas 
Tri Diagonal Matrix Algorithm (Bringen and McMillan, 1980; 
Napolitano and Walters, 1986) from upstream to downstream 
for each time step. The time step is evaluated based on the 
stability analysis given in Roache (1972), Peyret and Taylor 
(1983) and Fletcher (1988) for incompressible flows. The dis
cretization procedure is given in Venkat (1991). 

A viscous-inviscid domain splitting approach described in 
Halim (1986) is adopted in the present numerical model. The 
patch line between the viscous and inviscid regions (Fig. la) 
is selected such that it is well above the boundary layer thick
ness. Substantial computational savings are achieved using this 
inviscid-viscous approach compared to a fully viscous ap
proach. 

The unperturbed boundary layer solution is used as an initial 
guess for the stream function and the vorticity variables. Be
cause of the nonlinearities in the flow equations the vorticity 
on the body and in the domain is under-relaxed to avoid insta
bility for high frequency plate vibrations while the stream 
function in the domain is over-relaxed to speed the conver
gence. Absolute convergence criteria are used for both vari
ables. The converged stream function and vorticity values for 
each time step are used to calculate the friction and pressure 
coefficients (C/(£,»/ = r/i,0» Cp(£,r\ = T)ut)) on the plate surface. 
They are given by 

C/(£,r/ = W ) = 
_2_ 

Re 

2 (dydv_Sydv\ 

°lw+J \d% dri'dr, dU 
(5) 

dxdli 

p i , - r* f-L. 
Jfl ( /Re 

du du 
3£~7 9? 

dydv ld(u2 + v2) dx dy) ,„, 
h va; - — uu — \ at, d$dt d^dt 23£ as an (6) 

The plate is moved to the next time step and the numerical 
procedure described above is repeated. The simulations are 
performed until the solution reaches steady state, repeats from 
one cycle to the next. 

The spectral characteristics of the flow field are analyzed 
by applying Fast Fourier Transform (Newland, 1975) on the 
discrete numerical data iCp) obtained from the numerical 
model. The data (2048) points for the FFT analysis use the 
last cycle (steady state) of the time series Cp data. In this 
approach, any subharmonics created during the transient stage 
are not included in the spectral analysis. 

4 Model Testing 
Before applying the model to the problem of interest it was 

compared with several conventional fluid mechanics problems 
for which known solutions exist. In addition, the sensitivity 
of the numerical solutions to the size of the computational 
domain, grid resolution and location of the patch line were 
investigated. 

The model has been tested against cavity flow (Figs. 2 and 
3), oscillatory flow in a channel with wavy walls (Figs. 4, 5, 
and 6) and Blasius flow over a flat plate (Fig. 10). In each 
case the model predictions compared well with analytic solu
tions (Blasius flat plate results; White, 1991), other numerical 
(cavity flow modeling; Morris, 1975) or experimental obser
vations (oscillatory flow over fixed wavy walls; Sobey, 1982). 
These applications are described in detail in Venkat (1991). 
The test simulations show that the present numerical model 
can handle arbitrary shaped bodies and time dependent bound
ary conditions with reasonable accuracy. 

The model was tested for the influence of the location of 
up and downstream (sections FA and ED) and top free-stream 
boundaries (section FE) on the numerical results. All the test 
runs were performed for Re = 1000, H0 = 0.15 and St = 0 
(steady flow). After some trail runs, the up and downstream 
and top free stream boundaries are located as shown in Fig. 
8. 

Next the impact of the bump grid resolution in the x direction 

Nomenclature (cont.) 

X,Y = 

plate and the model 
entry domain 
dimensional coordi
nates in the physical 
plane 

>*max = height of the compu
tational domain in 
the physical plane 
plate deflection in y-
direction 
dimensional vorticity, 
1/s 
fluid density 
dimensional stream 
function, m2/s 
metric coefficients in 
the boundary fitted 
plane 

£>V 

yv = 

p 

.7 = 

£i.»?i = 

*?max 

£L.E..£I 

coordinates in the 
boundary fitted com
putational domain 
length of the compu
tational domain in 
the boundary fitted 
plane 
coordinates of the or
igin in the boundary 
fitted plane 
height of the compu
tational domain in 
the boundary fitted 
plane 
leading and trailing 
edges of the vibrating 
section of the body 
in the boundary fit-

\p, 01 

0)„ 

5L.E. 

Se 

Ph 

Pi 

ted computational 
plane 

= dimensionless stream 
function (\p = y/LUai) 
and vorticity 
(u = TL/Ua>) 

= wall vorticity 
= boundary layer thick

ness at the leading 
edge of the vibrating 
plate section 

= boundary layer thick
ness at the down
stream end of the 
domain 

= reference pressure at 
€ ' = £i 

= pressure at £' = £ 
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y = 0 

co f rom 

Equation 2 

a 

\|/ = 0 

co from 

Equation 2 

V = 0 

co from Equation 2 

b) Grid Domain 
Fig. 2 Physical plane and the grid domain for a square cavity problem 

on the model predictions was analyzed. Cj at the maximum 
amplitude position (x = 8.25) versus dy/dx ratios is plotted 
in Fig. 7 (afx-grid size in the x direction on the bump; dy-grid 
size between the bump and ij = 2 line). Friction coefficient is 
plotted as C/VRe in all the figures. The dy/dx ratio at which 
Cyat the bump decreases and reaches an asymptote was chosen 
for the subsequent grid spacing in the x direction on the bump. 

Finally, the number of grids on either side of the bump in 
the x direction were decreased to determine the minimum num
ber of grids to maintain an accurate solution. This ultimately 
decreases the computational time. The final grid domain con
sists of 61 and 41 grids in x and y directions, respectively (Fig. 
8). Similar analysis is performed for unsteady flow over a 
vibrating plate. 

The flow was next simulated to test the sensitivity to the 
patch line location. Cj versus x for various patch line locations 
is shown in Fig. 9. Table 1 shows the number of iterations and 
CPU time for the various patch line location. In general, as 
the patch line is moved closer to the body both the CPU time 
and the number of iterations decrease. When the patch line is 
located at>> = 0.75L (1.155e), just above the boundary layer 
region, the friction coefficient remains the same as in the pre
vious cases however the computational time and the number 
of iterations increase substantially. As a rule of thumb the 
patch line is located at least 1.5<5e from the body surface. 
Uncertainties in the numerical results were estimated by com
paring the computations using different mesh sizes (81 X51, 
71x51,61x51,61x41). A detailed description of sensitivity 
analysis is given in Venkat (1991). 

5 Results and Discussions 

(a) Steady Flow. A fixed sinusoidal bump (Bump 1) with 
amplitude, H0 = 0.1 is created on the plate between x = 8.0 
and 9.0. The Reynolds number based on distance from the 
leading edge of the plate to the leading edge of the vibrating 

Fig. 3(a) Contour plot of stream function for the flow in the square 
cavity at Re = 100 
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Fig. 3(6) Comparison of horizontal velocity (u) profile through the center 
of the vortex with the numerical solution of Morris (1975) for Re = 100 
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a) Physical Plane (Sobey , 1982) 

Fig. 4 Physical plane, grid domain and the associated boundary con
ditions for simulating oscillating flow through a rigid wavy (sinusoidal) 
channel 
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maximum How , t = T/4 maximum (low , t = 3T/4 

Re = 100 , a = 0.01 

zero flow , t = 0 zero flow , t = T/2 

Fig, 5 Contour plot of stream function for the oscillatory flow in the 
wavy (sinusoidal) channel 

Main flow at rest i Peak flow from right to 

Fig. 6 Experimental flow pictures of oscillatory flow in the wavy (sin
usoidal) channel by Sobey (1982) 

dy/cLc ratio 

Re = 1000 Mode = 2 Ho = 0.15 

Fig. 7 Variation of friction coefficient with dyldx ratio at the maximum 
amplitude position (x = 8.25) 

section, Rex, is 9000. This gives a boundary layer thickness 
(i5L.E.) to vibrating plate length (L) ratio of 0.4743 at the leading 
edge of the vibrating section and hence the boundary layer is 
relatively thick compared to the plate length: The ratio of H0 
to 6LE. is 0.21. The model predicted steady state variation of 
friction coefficient along the plate with the fixed bump is shown 
in Fig. 10. Cf changes rapidly at the position where the bump 
is created. Its value, however, slowly approaches the flat plate 
results far downstream. 

The pressure co'efficient is plotted in Fig. 11 together with 
the flat plate results. The pressure coefficient decreases mark
edly at the beginning of the bump and then remains almost 
constant downstream of the bump.. There is little pressure 
recovery in this region and hence a net pressure loss. A contour 
plot of stream function for this case is shown in Fig. 12. Figure 
12(ff) clearly shows that there is a separation bubble in the 
trough of the bump which is responsible for the lack of pressure 
recovery. 

The flow is simulated for the same values of H0 and Re for 
a second sinusoidal bump (Bump 2), 180 out of phase with 
the first. The variation of friction coefficient over the plate 
for this case is shown in Fig. 10. The flat plate case provides 
a reference. This case is very similar to the earlier simulation. 
The exception is that the separation bubble appears in the front 
part of the bump (Fig. 12(6)). Once again there is no down
stream pressure recovery. 

(b) Unsteady Flow. The plate (section BC), located be
tween x equal to 8 and 9 is forced to vibrate in simple harmonic 
motion with mode n = 2 (Fig. 1(a)). The amplitude of vibra
tion, HQ and the Reynolds number, Re are maintained at 0.1 
and 1000, respectively. The Strouhal number, St is fixed at 
0.05 (low frequency vibration). Based on the stability analysis 
given in Roache (1972), one cycle of vibration is divided into 
80 time steps. Figure 13 shows the shear stress, Cf, envelope. 
(The envelope is defined as the maximum and minimum values 
between which the value varies in time) for St = 0.05 and Re 
= 1000. The steady flow results for the flat plate and fixed 
sinusoidal shape cases are also included for comparison. The 
variation of skin friction coefficient over the vibrating portion 
of the plate is similar to the steady state results obtained for 
sinusoidal bumps with H0 = 0.1. Upstream the shear envelope 
deviates little from the flat plate results. Moving downstream 
from the trailing edge of the bump the Cf minimum curve 
slowly returns to the Blasius solution after two plate lengths 
(2L) whereas the Cf maximum curve returns after one half 
plate length (0.5L). The flow returns more quickly to the Blas
ius solution when the body oscillates with positive (upward) 
velocity in the first half of the vibrating section than when the 
velocity is negative (downward). The location of the down
stream boundary condition, eight wavelengths away from the 
trailing edge of the vibrating portion of the plate, provides a 
good representation of the flow. 

o.o 
6.0 

F 

x = 17.0 

y = 6.0 

E 
• N-:iKII : ' 

.U'jS**, I {{{ 

Vibrating section y 

Fig. 8 Grid domain (61 x 41) for simulating steady and unsteady flows 
over the vibrating plate 
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Table 1 Central Processor Unit (CPU) time for different patch line lo
cations 

PATCH 
LINE LOCATION 

6.00L 

3.40L 

1.00L 

0.75L 

CPU TIME 

(Minutes) 

31:46 • 

29:36 

24:32 

32:08 

NUMBER OF 

ITERATIONS 

896 

802 

700 

955 

1.6 

1.4 -

1.2 

1.0 -

O.B 

0.6 

0.4 -

0.2 

o.o -

0.2 

Patch ine location 

A 

C 
o 

- y = 6.00L 
~ y - 3.401 
- y = I.OOL 
- y ~ 0.75L 

, • • A - ? . , • , • T.E 

1000 St = 0.00 Mode = 2 Ho = 0.15 

The pressure envelope for the unsteady case as well as the 
steady state numerical results for the flat plate and fixed sin
usoidal bumps are shown in Fig. 11. Over the vibrating section, 
the Cp maximum and minimum curves deviate little from the 
steady state results. Downstream, their values are the same as 
the fixed sinusoidal bump cases both showing a net pressure 
drop compared to the Blasius result. 

The variation of pressure coefficient with the instantaneous 
amplitude of the vibrating plate at x = 8.25 is shown in Fig. 
14. This figure clearly shows that Cp varies linearly with the 
instantaneous amplitude of vibration of the plate for St = 
0.05. The time variation of the velocity of vibration is very 
small and hence the amount of fluid displaced into the incom
ing flow is small. The incoming flow has sufficient time to 
sense the deflection of the plate and therefore the Cp envelope 
follows the steady state results. A perspective view of the pres
sure coefficient along the plate versus time for St = 0.05 is 
shown in Fig. 15a. Very small amplitude pressure waves prop
agate downstream; upstream pressure propagation is minimal. 

Next the Strouhal number St is increased to 0.25 while main
taining Re and H0 at previous values. For this case, one cycle 
of vibration is divided into 80 time steps. The shear and pres
sure envelope for St = 0.25 and Re = 1000 are shown in Figs. 
16 and 17, respectively. The pressure envelope deviates con
siderably from the steady flow results. Unlike the St = 0.05 
case, the pressure envelope increases considerably over the 
vibrating section and remains fixed and large as one moves 
downstream. The maximum, minimum, and mean values of 

Fig. 9 Effect of patch line location on the distribution of friction coef
ficient over the fixed sinusoidal bump 
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Fig. 10 Variation of friction coefficient over the plate with the fixed 
sinusoidal bump for Re = 1000. The analytical solution due to Blasius 
is also shown for comparison. 

Re =1000 St = 0,05 Mode = 2 Ho = 0.100 

Fig. 11 Variation of pressure coefficient along the vibrating plate for 
Re = 1000 and St = 0.05. Steady flow results are also shown for com
parison. 
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Bump 2 

Stream function (v) 
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Fig. 12 Contour plot of stream function and vorticity in the vicinity of 
the fixed sinusoidal bump for Re = 1000 
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Fig. 16 Variation of friction coefficient along the vibrating plate for Re 
= 1000 and St = 0.25 
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Fig. 14 Variation of pressure coefficient with the instantaneous am
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Fig. 15 Variation of pressure coefficient along the vibrating plate as a 
function of time for Re = 1000 and St = 0.05, 0.25, and 1.0 

Re = 1000 St - 0.25 Mode = 2 Ho = 0.100 

Fig. 17 Variation of pressure coefficient along the vibrating plate for 
Re = 1000 and St = 0.25 

Cp at x = 10.71 (1.71L from T.E.) are shown in Table 2 while 
similar values for C/are shown in Table 3. The drastic increase 
in the pressure envelope can be better described if the stream 
function contours in the vicinity of the vibrating section are 
shown as a function of time through a typical vibration cycle. 
It is shown in Fig. 18. At t = T, the vibrating section achieves 
maximum velocity and zero plate deflection. The fluid on the 
leading half of the vibrating section moves upwards and pen
etrates into the external flow. This displaced fluid forms a 
circulation cell with the downward moving fluid on the later 
half of the plate as shown in Fig. 18(a). This flow pattern 
creates a pseudo surface displacement in the neighborhood of 
the vibrating section and ultimately deflects the incoming flow. 
As the plate moves to the T/8 position, in addition to the plate 
velocity, the deflection of the plate displaces the fluid upward. 
This is clearly illustrated in Fig. 18(b). Because of this, there 
is increased interaction between the external flow and the vi
brating section. The Cp minimum curve for St = 0.25 occurs 
at t = 0.12T, just prior to T/8. The flow pattern closely 
resembles that at t = T and clearly explains the increase in 
the pressure envelope shown in Fig. 17. As time progresses the 
velocity of vibration decreases and the deflection of the plate 
increases. At / = 774 the plate velocity is zero however the 

' deflection is maximum. In this case, the flow has separated 
from the forward portion of the plate (bump) and a separation 
bubble is created in the trough section of the vibrating plate 
(Fig. 18(c)). The leading edge of this rearward cavity (unsteady 
separation location) moves upstream compared to the fixed 
bump case (compare Fig. 12 to Fig. 18(e0). As the plate moves 
through the second quarter period the cavity disappears and 
the fluid over the first half of the vibrating section is displaced 
downward (Fig. \%{d) to 18(/)). This downward moving fluid 
on the first half of the plate, in the absence of the external 
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Fig. 18 Contour plot of stream function in the vicinity of the vibrating 

section of the plate for one complete cycle of vibration at T18 time 

interval for Re = 1000 and St = 0.25 

the downward moving fluid on the first half of the vibrating 
section. Because of this, no separation bubble is formed over 
the first half of the plate. This response is clearly illustrated 
when the plate reaches its zero deflection and maximum ve
locity position (t = 772, Fig. 18(e)). When the plate moves 
to 5T/8 position, the influence of plate velocity slowly de
creases and the deflection of the plate draws some external 
fluid into the first half while fluid is displaced on the second 
half of the vibrating section (Fig. 18(f)). At t = 3774 the plate 
velocity is zero and the plate has reached its maximum am
plitude. Two cavities are formed, one in the trough portion 
and the other at the trailing edge of the vibrating section of 
the plate (Fig. 18(g)). The sizes of these two cavities are larger 
than the steady flow results. As the plate moves into the fourth 
quarter time period, the upward moving fluid on the first half 
begins to form a circulation cell similar to t = T with the 
downward moving fluid on the second half (Fig. 18(/j)). In 
this process, the separation bubbles formed at the end of the 
third quarter time period are eliminated (Fig. 18(g)). 

A perspective view of pressure coefficient along the plate 
versus time for St = 0.25 is shown in Fig. 15(6)). The pressure 
coefficient over the vibrating section and at the downstream 
has increased considerably compared to the low Strouhal num
ber (St = 0.05) case. One can also clearly see a high amplitude 
pressure wave travelling downstream. In addition to the control 
exerted by the vibration amplitude the velocity of vibration 
also affects the pressure (Fig. 14). Although there is some 
upstream influence, it's impact on the pressure coefficient is 
insignificant. 

Time series plots of the pressure coefficient and its corre
sponding Fast Fourier Transform (FFT; Newland 1975) at x 
= 6.0, 8.0, 9.0 and 17.0 are shown in Fig. 19 for St = 0.25. 
At x = 6 (upstream of the vibrating section) there is no var
iation of pressure with time (Fig. 19(a)). The pressure coef
ficient at the leading edge of the vibrating section (x = 8.0) 
however does oscillate with time (Fig. 19(6)). The pressure 
wave however is nonsinusoidal. The FFT for this pressure wave 
has a peak amplitude 0.02 at the fundamental frequency and 
another very small peak at the first harmonic. There are no 
other harmonics present in the flow. As one moves downstream 
the amplitude of the pressure wave increases (Fig. 19(6)). Far 
downstream (x = 17), the spectral amplitude at the funda
mental frequency decreases to 0.015 and the second harmonic 
increases to 0.12 (Fig. 19(6)). Spectral amplitude at higher 
harmonics are minimal. 

The existence and amplitude of the pressure variations at 
the first harmonic is caused by energy transfer from the input 

Table 2 Mean and amplitude of downstream pressure wave at x = 

10.71 for various Strouhal numbers. Steady flow results are also included 

for comparison (x = 10.71, Re = 1000, n = 2, H0 = 0.10). 

CASE 

UNSTEADY 

FLOW 

STEADY FLOW 

FLAT PLATE 

BUMP 1 

BUMP 2 

STROUHAL 

NUMBER 

St 

0.05 

0.25 

0.50 

0.80 

1.00 

1.20 

0.00 

0.00 

0.00 

Cp 

MAXIMUM 

-0 .0307 

0.3615 

0.7849 

1.3390 

1.8468 

2.4842 

0.0000 

-0 .0400 

-0 .0358 

Cp 

MINIMUM 

-0 .0308 

-0 .1916 

-0 .3783 

-0 .7164 

-0 .8418 

-0 .8520 

0.0000 

-0 .0400 

-0 .0358 

Cp 

MEAN 

-0 .0351 

0.0850 

0.2033 

0.3112 

0.5025 

0.8161 

0.0000 

-0 .0400 

-0 .0358 

Cp 

AMPLITUDE 

0.0044 

0.2766 

0.5816 

1.0277 

1.3442 

1.6681 

0.0000 

0 .0000 

0.0000 

x = 10.71 , Re = 1000 , Mode = 2 , Ho = 0.100 

Table 3 Maximum and minimum values of C, envelope for various Strou

hal numbers (Re = 1000, n = 2, H0 = 0.10) 

CASE 

UNSTEADY 

FLOW 

STEADY FLOW 

BUMP 1 

BUMP 2 

STROUHAL 

NUMBER 

St 

0.05 

0.25 

0.50 

0.80 

1.00 

1.20 

0.00 

0.00 

Cf 

MAXIMUM 

-0.12677 

-0.21946 

-0.52231 

-0.93382 

-1.27209 

-1 .71253 

-0.05250 

-0.01612 

Cf 

MINIMUM 

1.00560 

1.15645 

1.18334 

1.32721 

1.46214 

1.65324 

0.95785 

0.97050 

Re = 1000 , Mode = 2 , Ho = 0.10 

flow, will form a circulation cell similar to Fig. 18(a) with the 
upward moving fluid on the second half of the vibrating sec
tion. In the presence of the external flow, however, the upward 
moving fluid over the second half of the vibrating section is 
in fact advected downstream. At the same time the incoming 
external fluid is drawn into the low pressure region created by 

Journal of Fluids Engineering DECEMBER 1991, Vol. 113 / 551 

Downloaded 02 Jun 2010 to 171.66.16.104. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



a.G-t 

0.48 

0..1? 

n.ir, 

001) 

- n i l 

-0.32 

-0.48 

(I) - x = fl.O 

(!) - i = B.r, 
(:>) - i = 9.0 

(, ('0 - X -17.00 

Steady Flow 
* - Flat Plate 
£ - Bump I 
C - Bump 2 
Unsteady Flow 

^ , 0 0 0 0—9 &— 

eg a a a—s—s—g 

DG • a o a—B—B Q 

N0NDIMFNS10NALIZFD TIMF 

Re ' 1000 SI = 025 Mode = 2 Ho = 0.10 Re = 1000 St =1.00 Mode = 2 Ho = 0.100 

Fig. 19(a) Time series plot of pressure coefficient at x = 6.0, 8.0, 9.0, Fig. 21 Variation of pressure coefficient along the vibrating plate for 
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Fig. 19(b) Pressure coefficient versus frequency at x 
and 17.0 for Re = 1000 and St = 0.25 
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Fig. 20 Variation of friction coefficient along the vibrating plate for 
Re = 1000 and St = 1.0 

frequency to higher harmonics by the nonlinear advective terms 
u du/dx, v du/dy in the Navier-Stokes equations. This can be 
explained by assuming that the plate is vibrating in simple 
harmonic motion with a known fundamental frequency and 
amplitude (a = H0 Sin kx Sin lirft). For small amplitudes the 
du/dy term approximately follows the shape of the vibrating 
section with only a small phase shift. This term therefore os
cillates at the fundamental frequency. The vertical velocity v 
also oscillates with the same fundamental frequency but 180 
deg out of phase with the amplitude of the vibrating plate (v 
= H0 2ir/Sin kx Cos 2irff). The product of these two terms 
is Ai (Sin kx)2 Sin 2%ft Cos 2TT/T. This can be written as A2 
(1 - Cos 2 kx) (Sin Aitft) where A \ and A2 are known constants. 
It is seen clearly that when the body vibrates at the known 

fundamental frequency the nonlinear term v du/dy transfers 
energy to the first harmonic. 

To investigate the flow for high Strouhal numbers, a value 
of St equal to 1.0 was selected (high frequency of vibration). 
For this case the plate oscillation period is the same as the 
external flow advective time scale. The model predicted shear 
and pressure envelopes are shown in Figs. 20 and 21, respec
tively. The shear envelope differs considerably from the steady 
state results. This is due to the second term in Eq. (5) becoming 
significant for high Strouhal numbers. Downstream of the 
vibrating plate the pressure envelope range is considerably 
higher than for the low and medium Strouhal number cases. 
This increase in the Cp envelope range is due to increased 
vertical advection of flow by the vibrating plate. The stream 
function contour is shown in Fig. 22 for one complete cycle 
of vibration at every T/8 time intervals, respectively. At t = 
T, the displaced fluid creates a large circulation cell in the 
neighborhood of the vibrating section, compared to the St = 
0.25 case (Fig. 22(a)). The vibrating fluid disturbs the external 
flow considerably both up and downstream. When t = 772 
the leading edge of the recirculation cavity moves upstream 
compared to the St = 0.25 case (Fig. 22(b)). As the plate 
moves to the second quarter period, the flow pattern on the 
vibrating section deviates from the St = 0.25 case. In addition 
to the external fluid flowing onto the vibrating section (similar 
to St = 0.25 case), a small circulation cell is also formed around 
the mid point of the vibrating plate (Fig. 22(d)). This flow 
pattern is more clearly illustrated when the plate moves into 
the third quarter period (Figs. 22(e) to 22(f)). At / = 3774, 
two separation bubbles are formed one on the first half and 
the other near the trailing edge of the vibrating section, similar 
to the St = 0.25 case (Fig. 22(g)). These bubbles however are 
considerably larger than the St = 0.25 cavities, especially the 
one at the trailing edge. With subsequent motion of the plate 
to the fourth quarter time period, the fluid displaced upward 
on the first half and downward on the second half fills the 
cavities created at t = 3774, there by forming a circulation 
cell as seen at t = T. These flow patterns show that the in
teraction between the external flow and the vibrating plate 
increases with increasing Strouhal number. 

The variation of Cp with the instantaneous amplitude of the 
vibrating section at x = 8.25 is shown in Fig. 14. This figure 
clearly shows that the Cp amplitude is considerably large for 
St = 1.0 compared to low St cases. A perspective view of 
pressure coefficient versus time and distance along the plate 
is shown in Fig. 15(c) for the St = 1.0 case. The pressure 
propagates one plate length upstream. The increase in the 
downstream pressure wave is clearly depicted in Fig. 15(c) for 
high Strouhal frequency. 

The time series plot of pressure coefficient for St = 1.0 at 
x = 6.0, 8.0, 9.0, and 17.0 and their corresponding FFT are 

552 / Vol. 113, DECEMBER 1991 Transactions of the AS ME 

Downloaded 02 Jun 2010 to 171.66.16.104. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



t = 7 T / 8 

t = T / 2 

Fig. 22 Contour plot of stream function in the vicinity of the vibrating 
section of the plate for one complete cycle of vibration at 7"/8 time 
interval for Re = 1000 and St = 1.0 
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Fig. 23(a) Time series plot of pressure coefficient at x = 6.0, 8.0, 9.0, 
and 17.0 for Re = 1000 and St = 1.0 
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As the fluid flows over the vibrating portion of the plate the 
spectral amplitude at the first and second harmonics increase 
continuously due to nonlinear interaction between the oscil
lating fluid and the external flow in the vicinity of the vibrating 
section. 

6 Conclusion 
For very low frequencies, very little energy transfer takes 

place. The fluid flowing over the vibrating section doesn't sense 
this low vibrational energy and hence very little nonlinear in
teraction between the flow and the vibrating body is observed. 
The pressure varies linearly with the instantaneous amplitude 
of the vibrating plate. 

The pressure and hence the normal force acting on the vi
brating flat plate is highly nonlinear and the nonlinearity pre
dominates at higher frequencies (high Strouhal numbers). The 
nonlinearity in the pressure coefficient is controlled by the v 
du/dy term and increases with increasing Strouhal number. 
For medium and high Strouhal numbers, the incoming flow 
senses the disturbance created due to the vibration of the body 
and receives energy at the characteristic vibration frequency. 
After energy transfer the displaced fluid interacts with the main 
flow in the neighborhood of the vibrating section due to the 
nonlinear terms in the governing equations (e.g., u du/dx, v 
du/dy etc.). This energy, received at the input frequency, is 
transferred to higher harmonics. The amplitude of the higher 
harmonics increase with increasing Strouhal number. The 
stream function and velocity vector plots clearly show that for 
high Strouhal numbers more fluid is advected into the main-
flow. The displaced fluid penetrates one plate length upstream. 
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Fig. 23(b) Pressure coefficient versus frequency at x = 6.0, 8.0, 9.0, 
and 17.0 for Re = 1000 and St = 1.0 

shown in Fig. 23. As explained previously the pressure wave 
becomes nonlinear as one moves downstream, through the 
vibrating section. Far downstream (x = 17.0) the spectral 
amplitude at the fundamental frequency is 0.26 while the first 
harmonic has a value of 0.44 (Fig. 23(b)). Unlike the low 
Strouhal case the spectral amplitude at the second harmonic 
is considerable and its value is half that of the first harmonic. 
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Numerical Analysis of Laminar 
Flow in Curved Elliptic Ducts 
The complete form of the Navier-Stokes equations is solved in this paper for a 
steady, incompressible, fully developed laminar flow in a curved duct of elliptic 
cross section. This is achieved by the use of the control volume-based finite difference 
method via the numerically generated boundary fitted coordinate system. The cur
vature ratio is included in the primitive variable governing equations, which are 
solved based on the SIMPLE algorithm. Solutions are obtained for the minor-axis 
to major-axis ratios of the elliptic duct, 0.2, 0.5, and 0.8, and for Dean numbers 
ranging from 11.41 to 635.7. It is found that only one pair of vortices appears on 
the cross-section, even at a Dean number of 635.7. The friction factor and the ratios 
of the curved duct to straight duct are tabulated and the correlation equation is 
developed. Furthermore, the distribution of the axial velocity is displayed graphically 
to illustrate its variations with the Dean number and the minor-axis to major-axis 
ratio of the elliptic duct on the horizontal symmetry line and on the half-vertical 
symmetry line. The present method is also applied to solve for a fully developed 
laminarflow in a curved square flow. The results are compared with the data available 
in the literature and very close agreement is observed. 

Introduction 
Flow through curved passages occurs in heat exchangers, 

turbo machinery blade passages, and aircraft intakes. Recently, 
the flow of blood through human arteries is also being modeled 
as flow through curved passages. The salient feature of flow 
in curved ducts is the presence of cross-stream recirculation in 
the twin counter-rotating vortices. These are generated due to 
the action of centrifugal forces on the primary flow. For the 
flow and heat transfer in a curved pipe, some review articles 
have been published by Berger et al. (1983) and Shah et al. 
(1987). Primarily, these investigations are mainly restricted to 
curved ducts with circular and rectangular cross sections. How
ever, the scant information dealing with elliptic cross sections 
is obtained from these investigations. 

For flows through curved pipes of elliptical cross section, 
very few theoretical and experimental investigations are avail
able. The relevant studies are by Thomas and Walters (1965), 
Srivastava (1980), and Takami and Sudou (1984). In these 
analyses, the secondary flow is investigated by using Dean's 
(1927, 1928) formulation in which either the simplified forms 
of momentum and continuity equations have been used, or by 
using the boundary layer approximation approach. Recently, 
Topakoglu and Ebadian (1985, 1987) investigated the flow in 
curved elliptic pipes using the double expansion method of 
Topakoglu (1967). Some explicit expressions have been pre
sented for flow rate. However, their results are limited by the 
finite number of calculated terms of the expansions. To the 
authors' best knowledge solutions for a laminar, fully devel
oped flow in curved elliptic ducts based on a complete Navier-
Stokes equation have not been reported in the literature to 
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data. Therefore, it is necessary to obtain a numerical solution 
of the Navier-Stokes equations, which governs the steady, fully 
developed laminar flow in a curved elliptic duct, including the 
curvature ratio effect. An accurate numerical solution for the 
flow problem is a fundamental step toward studying convective 
heat and mass transfer. 

The objective of this work is to present numerical results 
for flow in a curved duct of elliptic cross-section. Additionally, 
the flow is considered to be steady, incompressible laminar 
flow and is also assumed to be fully developed. The solutions 
are obtained by solving the Navier-Stokes equations in which 
the curvature ratio is included. The numerically generated 
boundary-fitted coordinate system is used to overcome the 
difficulties of discretizing the computational domain, and in 
addition, a general computer program is developed. Three 
minor-axis to major-axis ratios of the elliptic duct are calcu
lated and the Dean number is varied up to 63 5.7. The secondary 
stream function contour and axial velocity distribution are 
numerically calculated and illustrated graphically. Further
more, a correlation for the friction factor ratio of the curved 
elliptic duct to straight elliptic duct is also established for 
engineering applications. 

Problem Formulation 
The curved pipe geometry is shown in Fig. 1 where the 

toroidal coordinate system is used. The elliptical cross-section 
considered here has a semi-major axis, a, and a semi-minor 
axis, b. In addition, the section is oriented in such a way that 
the major axis is along the direction of the curvature of the 
curved pipe, and the minor axis is along the direction of the 
axis of symmetry of the curved pipe. The governing equations 
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axis of 
curved pipe 

X,U 

Fig. 1 Geometry and coordinate system 

for the steady, fully developed, incompressible laminar flow 
can be written as: 

Continuity Equation: 

dU dV 
— + — + 
dX dY 

U n 

R + X=° 

Momentum Equation: 

dU ,dU W2 1 dP 
dX+ dY R + X~ pdX 

+ V 

u^+vd^ 
dX dY 

~d2U d2U 1 dU U 

dX2 + dY2 + R + XdX (R+X)2 

1 dP 

-~PdY+V 

~d2V d2V 1 dV 

dX2 + dY2 + R+XdX 

(1) 

(2) 

(3) 

TrdW dW UW 
U + V H = 

dX dY R+X 
R dP 

+ v 

(R+X)p dZ 

1 dW W d2W d2W 
dX2+ dY2+ R + X dX (R+X)7 (4) 

Because of the symmetry of the flow, a half of a cross section 
of an elliptic duct is chosen as the solution domain. Therefore, 
the associated boundary conditions are: 

U=V=W=0 at the wall (5) 

dU dW 
~ dY~ dY~ 

0 along the line of symmetry, Y=0 (6) 

where U, V, and W are the velocity components of the X, Y, 
and Z directions, respectively, as shown in Fig. 1. Also, P, v, 
p, and R are pressure, dynamic viscosity, density of fluid, and 
the radius of the curvature, respectively. In the fully developed 
flow, the pressure gradient varies only in the cross-section of 
the curved duct.. Therefore, the pressure gradient in the axial 
direction, dP/dZ, in Eq. (4) remains constant. 

Introducing the dimensionless variables defined in the No
menclature, one obtains the following governing equations: 

d(uu) d(uv) 

dx dy 

w2 

r + x 

du dv u 

dx dy r + x 

dp d\ 
dx dx2 

d2u 1 du 

(7) 

dy2 - 5 - (8) 
r+xdx (r+x) r + x 

d(uv) d(vv) dv uv 

dx dy dy dx2 dy2 r + xdx r + x 
(9) 

d(uw) d(vw) uw 
dx dy r + x 

d2w 

r dp d w 

r + x dz dx2 

1 dw 
: + 

UW 

dy r + x dx (r+x) r + x 

The boundary conditions are restated as follows: 

u = v=w = 0 at the wall 

du dw 

dy dy 

At this point, a numerical solution is the only approach for 
solving the above three simultaneous quasi-linear, second-
order partial differential equations. The expression for the 
product of the friction factor and the Reynolds number can 
be obtained by considering the overall force balance for the 

(10) 

(11) 

(12) 

N o m e n c l a t u r e 

De = 

D„ = 
/ = 
J = 

P = 
P = 

R = 

Re 

U, V, W 

semi-major axis of the 
curved elliptic duct 
semi-minor axis of the 
curved elliptic duct 
Dean number, Re(Dh/ 
R)wi 

hydraulic diameter 
friction factor 
Jacobian of transforma
tion, Eq. (26) 
pressure, Pa 
dimensionless pressure, 
P/(Pv2/Dh

2) 
radius of the curvature of 
the centerline of the duct, 
Fig. 1 _ 
Reynolds number, Dh W/ 
v = ~w 
dimensionless radius of 
curvature, R/D/, 
velocity components in 
the X, Y, and Z direc
tions 

u, v, w = dimensionless velocity 
components (U, V, W)/ 

_ i"/Dh) 
average axial velocity 
dimensionless average ax
ial velocity 
contravariant velocity de
fined by Eq. (26) 
contravariant velocity de
fined by Eq. (26) 

X, Y = transversal coordinates, 
Fig. 1 and Fig. 2(a) 
dimensionless transversal 
coordinates (X, Y)/Dh 

axial coordinate, Fig. 1 
dimensionless axial coor
dinate, Z/Dh 

coefficient defined by Eq. 
(19), minor-axis to major-
axis ratio of elliptic duct, 
2b/2a 
coefficient defined by Eq. 
(20) 

W 

w 

V = 

~v = 

x,y = 

Z 
z 

y = coefficient defined by Eq. 
(21) 

v = kinematic viscosity 
£, i) = transversal coordinates in 

computational plane, Fig. 
(2b) 

4> = coefficient defined in Eq. 
(22) 

£G = rate of flow defined by 
Eq. (15) 

p = density 
\p = coefficient defined by Eq. 

(23) 

Subscripts 

c, s = values for curved and 
straight ducts, respec
tively 

;', j = space subscripts of a grid 
point 

w = wall 
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differential axial length as given by Cheng et al. (1976): 

dp 
/ R e = - m / ( 2 T v ) . (13) 

Another parameter involved here is the ratio of the flow rate 
in the duct. This ratio can be defined in terms of the/Re as: 

& = M^k (14) 

where in the above equation, subscripts, "s" and " c , " refer 
to the straight and curved ducts, respectively. Furthermore, 
this equation can be written as: 

(15) 

where (JRe)s is calculated by the equation (Kakac et al., 1987): 
2 

(/Re)s = 2( l+a 2 ) 
E(m) 

(16) 

In the above equations, m= 1 - a 2 and i?(/w) is the complete 
elliptic integrals of the second kind. 

Solution Procedure 

Grid Generation. For purposes of the symmetrical flow 
field, a half domain is considered as the computational domain 
for this problem. Generally speaking, the discretization of this 
computational domain is tedious and difficult for the devel
opment of a general computer program. Fortunately, this dif
ficulty can be resolved by the use of the numerically generated 
boundary-fitted coordinate system. The essential idea of a 
boundary-fitted coordinate system is such that it requires a 
computational domain boundary to coincide with the coor
dinate line. One of the methods often used was suggested by 
Thompson et al. (1974). The grid point distribution is con
trolled according to the method suggested by Thomas et al. 
(1982). Therefore, the domain transformation between the 
physical coordinates (x, y) and the boundary-fitted coordinates 
(£, 7)) is achieved by solving the following two coupled equa
tions: 

(17) 

where 

/d2x dx\ d2x (d2x .dx\ 

HaV*+^)-2W7W+W 
(d2y+Jy\ IR d2y + fd2y^idy\ 

a=(0)+(^)' 
dx dx dy dy 

3£ 3T7 3C; drj' 

= 0 

= 0 (18) 

(19) 

(20) 

7 = (21) ;I)MD-
On the left and right boundaries of the domain in the com
putational plane: 

* = - T l 
d2y dy d2x dx dx\ /dy 

dv) \dv 
(22) 

I3i7 9T7 dri 3T7 

On the top and bottom boundaries of the domain in the com 
putational plane: 

<t>=-\TT2 
d2x dx d2y dy 

dt 3? 3 ^ 3? ay + U (23) 

The <t> and \j/ values on the internal grid points are determined 
by linear interpolation from the boundary values. The resulting 
grid construction in the physical plane and in the computational 
plane is shown in Figs. 2(a) and 2(b), respectively. 

Transformation of Governing Equations and Method of 
Solution. The dimensionless governing Eqs. (7) through (10), 
can be written in terms of the following general conservation 
form: 

3(w<£) d(v<t>) 

dx dy 
d_ 

dx 'dx 
+UT*di]+R*{x'y) (24) 

For the general dependent variable, 4>=l, u, v, w, Eq. (24) 
refers to continuity and momentum equations in the x, y, and 
z directions, respectively. T0 and R^, (x, y) are correspondingly 
diffusivity coefficients and source terms. After some mathe
matical transformation, this equation is written as: 

+ JS^,V) (25) 

/"l t\ 

0? 077 

a 
3TJ 

3 

9? 
VJ 30 -30 

7 V a 3 T ^ u« 
where 

dri dri 

T, dx dy 

a? a? 
dx dy dx dy 

3c; 377 97) 3C; 
(26) 

The general dependent variable, <f>, the diffusion coefficient, 
r 0 , and the source term, S0> in the £, 77 coordinate system, are 
defined in Table 1 for each conservative equation. 

The governing Eq. (25) is approximated with finite difference 

equations by a control volume-based finite difference method 

for the dependent variables u, v, and w. The convection terms 

are discretized by a power-law scheme (Patankar, 1980) which 

is an approximation of the exponential scheme and a second-

Table 1 Variables in the conservation equations 
Equation 

Continuity 

u-momentum 

v-momentum 

w-momentum 

4> 

1 

u 

V 

w 

r, 
0 

1 

1 

1 

L>0 

u 

r + x 

1 (dp dy dp dy\ 

1 1 Idu dy du 8y\ 
+ r + xJ\d£ dti~di) di) 

u w2 u2 

(r + x)2 r + x r + x 

1 / dpdx dp dx\ 

~J\d£ dri + dV di) 

1 1 /dv dy dv dy\ 
+ r + xj[di dr,~dridi) 

uv 

(r + x) 

r dp 

r + x dz 

1 1 /dw dy dw dy\ 
+ r + xJ\di d~r]~ d-q Hi) 

w 2uw 

(r + x)2 r + x 
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order central-difference formula is used to approximate the 
diffusion terms. A staggered grid system is employed for the 
transverse velocity_components, u and v, as well as contra-
variant velocities, [/and V. Here, a combined use of the Carte
sian velocity components and the contravariant velocity 
components is devised. In the momentum equation, the Carte
sian components are treated as the primary variables, while in 
the continuity equation, the contravariant velocity components 
are first updated directly to satisfy the continuity equation. 
In the discretizing process, the cross-derivative terms, 
d2/d£3?j are treated as additional source terms and the standard 
second-order central-difference approximation is also applied 
to the computation of a, (3,7, and J. The solutions are obtained 
by an iterative scheme, which is a modified SIMPLE algorithm 
in a boundary-fitted coordinate system (Shyy et al., 1985). A 
brief description of the main steps of this numerical procedure 
is given here for convenience. 

For a given ratio, a, of the minor-axis to major-axis of the 
curved elliptic duct, curvature ratio, r, and the axial pressure 
gradient, dp/dz, the velocity contributions (u, v, and w) and 
pressure distribution/?^, are initially guessed and the momen
tum equations for u and v are then solved to get new velocity 
fields for u and v. Generally, these transverse velocity fields 
with the initial guessed pressure field, cannot satisfy the con
tinuity equation. Thus, the pressure correction equation is 
solved andjhen u^ v, and p are corrected accordingly. Fur
thermore, U and V are updated and the momentum equation 
for w is solved based on the corrected transversal velocity and 
pressure fields. Thus, one iteration cycle is completed. The 
iteration is repeated until the following convergence criterion 
is satisfied for all nodes: 

u4+'-4-u -<io- (27) 

where </> stands for u, v, and w. Subscripts, / andy, represent 
the £ and 7/ coordinates, and superscript, k, represents the kth 
iteration. II-Hoc is the infinite norm. 

It is necessary to use an underrelaxation factor in solving 
the transversal momentum equations and pressure correction 
equation in order to make the solution converge. A relaxation 
factor ranging from 0.15 to 0.3 has been used for different 
computation cases. 

In order to consider the effects of grid size, four grids of 
20 x 10, 30 x 15,40 x 20, and 50 x 30 have been tested to choose 
an independent grid. The results of comparing the finer 50 x 30 
grid with the coarser 30 X 15 grid indicates a maximum dis
crepancy of less than 4 percent, and the maximum deviation 
occurs in the case of a small curvature ratio. The results of 
comparing 40 X 20 grid and the 30 X 15 grid show a maximum 
discrepancy of less than 3.5 percent. The computation time 
needed for the 30 x 15 grid is several times less than the one 

needed for the finer grids of 40 x 20 or 50 X 30. Depending on 
the different cases being considered, and from the viewpoint 
of compromising computational time and-numerical accuracy, 
the 30x15 grid is used in the calculation. In addition, this 
present method is also applied to numerically analyze the flow 
in a curved square duct. The results are compared with Cheng 
et al. (1976) and Duh et al. (1989) and they are documented 
in Table 2. It is seen from this table that the maximum deviation 
between present results and the results of Cheng et al. (1976) 
is 2.45 percent with the same grid size of 20 X 10. However, 
the higher deviation exists between the present conclusions and 
the results of Duh et al. (1989). Perhaps this is due mainly to 
the different convergence criteria used in each study. Fur
thermore, all of the computations have been conducted on a 
MicroVax 8800. 

Discussion of Results 

Secondary Flow. Laminar flow in the curved elliptic duct 
is characterized by a secondary flow in the cross sectional plane 
perpendicular to the axial flow direction. The nature of this 
phenomenon depends upon the Dean number, which represents 
the ratio of the centrifugal force to the viscous force. The 
geometry is another factor effecting the secondary flow. The 
effects of the Dean number, De, and geometry parameter, a, 
on the secondary flow pattern in the form of stream function 

Y 

(a) 

Fig. 2(a) Physical domain 

"n k 

(b) 

Fig. 2(b) Computational domain 

Fig. 2 Grid configuration 

8P 

dz 

- 4 x l 0 3 

- 4 x l 0 4 

- l . l x l O 5 

- 8 x l 0 4 

- 8 x l 0 4 

- 2 . 5 x 1 0 " 

- 8 . 0 x 1 0 " 

-9 .0X10" 

- 1 . 1 x 1 0 s 

- 1 . 4 x 1 0 s 

Table 2 Comparison of numerical results for the curved square duct 

r 

100 

100 

100 

10 

10 

4.0 

4.0 

4.0 

4.0 

4.0 

Grid 

20x10 

20X10 

20X10 

20X10 

40x20 

20X10 

20x10 

20x10 

20x10 

20x10 

De 
Cheng 
et al. 
(1976) 

13.9 

100.0 

202.6 

368.1 

364.3 

214.8 

488.4 

520.2 

618.8 

715.4 

Present 
Study 

14.1 

99.1 

201.4 

358.4 

376.6 

211.5 

480.9 

523.7 

606.5 

726.4 

Duh 
et al. 
(1989) 

13.9 

— 
218.5 

— 
— 

233.4 

— 
— 
— 
— 

fc/fs 
Cheng 
et al. 
(1976) 

1.01 

1.41 

1.91 

2.42 

2.44 

2.04 

2.88 

3.04 

3.12 

3.43 

Present 
Study 

1.0 

1.42 

1.92 

2.48 

2.36 

2.08 

2.92 

3.02 

3.19 

3.39 

Duh 
et al. 
(1989) 

1.01 

— 
1.78 

— 
— 

1.89 

— 
— 
— 

• — 
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(c) a = 0.8 
r = 4.0 
De = 543.0 

(d) a = 0.5 
r = +.0 
De = 635.7 

Fig. 3 (a) Stream-function contours for elliptic duct, a = 0.5, De = 334.6; 
(b) Stream-function contours for elliptic duct, a = 0.2, De = 424.6; (c) 
Stream-function contours for elliptic duct, a = 0.8, De = 543.0; (d) Stream-
function contours for elliptic duct, a = 0.5, De = 635.7 
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b 
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Fig. 4 Axial velocity distribution for elliptic duct, a = 0.2 

contour, are shown in Fig. 3 for the fully developed flow in 
a curved elliptic duct. 

It is observed from comparing Figs. 3(a) through 3(d) that 
only one pair of vortices occurs in the elliptic cross section in 
spite of the Dean number varying from 334.6 to 635.7. Fur
thermore, it is found that the location of the vortex center 
shifts as the Dean number varies. Due to centrifugal instability 
(Daskopoulos et al., 1989; Cheng et al., 1976; Mille et al., 

w 
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C 
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— 
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0.75 1 

Fig. 5(b) Vertical symmetry line 

Fig. 5 Axial velocity distribution for elliptic duct, « = 0.5 

1985; and Ghia et al., 1987), the secondary vortex takes place 
near the central outer wall in the curved rectangular duct and 
circular pipe. Whereas, the flow in the curved elliptic duct 
remains stable in the range of this computation. 

Axial Velocity Distributions. The axial velocity profiles 
along the horizontal and vertical centerlines are shown in Figs. 
4-6 for the minor-axis to major-axis ratios of a = 0.2, 0.5, and 
0.8 with the Dean number as a parameter. The effect of the 
Dean number on the axial velocity profiles is seen to be rather 
regular, indicating a stable flow field. The behavior of the axial 
velocity profile is qualitatively similar to each other, indicating 
that axial velocity is independent of a. The location of the 
maximum axial velocity on the horizontal symmetry line moves 
progressively toward the outer wall and its magnitude decreases 
as the Dean number increases (Figs. 4(a), 5(a), and 6(a)). For 
the velocity distribution on the vertical symmetry line, the 
maximum velocity occurs on the center point and the velocity 
is decreased monotonously along the positive vertical when the 
Dean number decreases. However, the maximum value of the 
axial velocity appears near the outer wall for a larger Dean 
number (Figs. 4(b), 5(b), 6(b)). From these three figures, it is 
also seen that the axial velocity distribution, regardless of 
whether it is on the horizontal or the vertical symmetry line, 
tends to be full as the Dean number increases. 

The Friction Factor. The fully developed laminar flow in 
a curved duct of elliptic cross section is computed by a nu-
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Fig. 7 Friction factor ratio versus Dean number for a = 0.2 

merical method considering the curvature ratio effect in the 
governing equations. Three minor-axis to major-axis elliptic 
duct ratios are taken into account. The numerical results for 
the friction factor and rate of flow are tabulated and given in 
Tables 3 through 5 for different axial pressure gradients, cur
vature ratios, and minor-axis to major-axis ratios of the elliptic 
duct. The data shown in these tables are also used to draw the 
curves in Figs. 7 through 12. The ratios of the friction factor 
for the curved elliptic duct,/c, to the straight elliptic duct,ys, 

Table 3 
dp 

dz 

- 8 x 1 0 " 

- 4 x l 0 3 

- 2 . 5 x 1 0 " 

- 4 x l 0 3 

- 2 . 5 x 1 0 " 

-8X10" 

- 4 x l 0 3 

- 8 x 1 0 " 

- l . l x l O 5 

Table 4 
dp 

dz 

- 4 x l 0 3 

- 8 x l 0 3 

- 8 x 1 0 " 

- 1 . 4 x l 0 5 

- 4 x l 0 3 

- 8 x 1 0 " 

- l . l x l O 5 

- 4 x l 0 3 

- 8 x 1 0 " 

- 1 . 1 x 1 0 s 

Table 5 
dp 

dz 

- 4 x l 0 3 

- 8 x 10" 

- l . l x l O 5 

- 1 . 4 x l 0 5 

- 4 x l 0 3 

- 8 x l 0 3 

- 8 x 1 0 " 

- l . l x l O 5 

- 4 x l 0 3 

- 8 x 103 

- 8 x 1 0 " 

- l . l x l O 5 

Numerical results for friction factor, a -

r 

4 

4 

4 

10 

10 

10 

100 

100 

100 

Re 

849.2 

98.6 

390.7 

105.2 

463.8 

1074.3 

107.4 

1581.1 

1977.6 

De 

424.6 

49.3 

195.4 

33.3 

146.7 

339.7 

10.7 

158.1 

197.8 

fc/fs 

2.58 

1.11 

1.75 

1.04 

1.47 

2.04 

1.02 

1.38 

1.52 

So 

0.612 

0.098 

0.428 

0.038 

0.321 

0.509 

0.018 

0.277 

0.342 

Numerical results for friction factor, a 

r 

4 

4 

4 

4 

10 

10 

10 

100 

100 

100 

Re 

98.7 

169.7 

867.7 

1271.3 

108.8 

1058.0 

1308.7 

114.4 

1514.1 

1921.4 

De 

49.4 

84.7 

433.8 

635.7 

34.4 

334.6 

413.9 

11.41 

151.4 

192.1 

fc/fs 

1.20 

1.40 

2.74 

3.27 

1.09 

2.25 

2.50 

1.04 

1.57 

1.70 

fo 

0.170 

0.288 

0.635 

0.695 

0.085 

0.555 

0.600 

0.038 

0.363 

0.413 

Numerical results for friction factor, a 

/• 

4 

4 

4 

4 

10 

10 

10 

10 

100 

100 

100 

100 

Re 

99.4 

881.67 

1085.9 

1269.4 

110.3 

193.4 

1072.7 

1336.4 

118.6 

233.5 

1536.1 

1941.4 

De 

49.7 

440.8 

543.0 

634.7 

34.9 

61.2 

339.2 

422.6 

11.9 

23.4 

153.6 

194.1 

fc/fs 

1.25 

2.82 

3.15 

3.43 

1.13 

1.28 

2.32 

2.56 

1.05 

1.06 

1.62 

1.76 

*e 

0.200 

0.645 

0.682 

0.708 

0.112 

0.221 

0.568 

0.609 

0.046 

0.060 

0.382 

0.432 

= 0.2 

fRe 

47.11 

20.28 

31.99 

19.02 

26.95 

37.23 

18.62 

25.30 

27.81 

= 0.5 

fRe 

20.26 

23.61 

46.10 

55.06 

18.38 

37.81 

42.03 

17.49 

26.42 

28.63 

= 0.8 

fRe 

20.13 

45.37 

50.65 

55.14 

18.14 

20.68 

37.29 

41.16 

16.87 

17.13 

26.04 

28.33 

are presented in Figs. 7, 8, and 9 for a = 0.2, 0.5, and 0.8, 
respectively. From these figures, it is seen that the friction 
factor is increased as the Dean number increases and decreases 
as the curvature ratio increases. However, the effect of the 
curvature ratio on the friction factor is not clearly observed 
from these figures since the curvature is also included in the 
definition of the Dean number. In addition, analysis of these 
data shows that the friction factor increases as the minor-axis 
to major-axis ratio increases. However, the Dean number has 
a greater effect on the friction factor than the minor-axis to 
major-axis ratio. Tables 3 through 5 clearly indicate that the 
present computation covers the Dean numbers ranging from 
10.7-424.6 for a = 0.2, 11.41-635.7 for a = 0.5, and 11.9 
-634.7 for a = 0.8, Three curvature ratios, r = 4, 10, 100 are 
also used here. Based on the present numerical results and 
using the least squares method, the correlation equation of the 
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friction factor results for the curved elliptic duct is obtained 
as: 

•£= 1+0.0031 a0'3 De107 

Js 
(28) 

The maximum deviation of Eq. (28) from the numerically 
predicted values is 15 percent. This equation can be used for 
engineering design purposes. 

The next three figures show the variation of £e with the 
Dean number at different minor-axis to major-axis ratios, 
a = 0.2,0.5, and 0.8, of the elliptic duct. Because of the relation 
between fc/fs and £G, a detailed discussion is not necessary 
here. 

Conclusion 
The fully developed laminar flow in the curved duct with 

an elliptic cross section is investigated by a control volume 
based finite difference method via the numerically generated 
boundary-fitted coordinate system. The effect of the curvature 
ratio on the flow is considered in the complete Navier-Stokes 
equations. 

The present analysis reveals that only one pair of secondary 
vortices occurs on the cross section in all the computation cases. 
The location of the vortex center shifts toward the negative 
abscissa direction as the Dean numbers increase. No secondary 
pair of vortices appear up to a Dean number of 635.7. This 
indicates that the flow in the curved elliptic duct is stable in 
the computed cases. 

The axial velocity results are shown graphically to illustrate 
the variations along the horizontal and vertical symmetry lines. 
It is seen that as the Dean number increases, the distribution 
of the axial velocity becomes full and the maximum value 
moves to the proximity of the outer wall. 

It is found that the friction factor increases as the Dean 
number increases and as the curvature ratio decreases. The 
minor-axis to major-axis ratio of the elliptic duct also effects 
the friction factor, but it is not as strong as the Dean number. 
However, for the purposes of engineering design, the friction 
factor ratio of the curved elliptic duct to the straight elliptic 
duct is given in the form of Eq. (28), which is obtained from 
all the computed data by using the least square curve-fitted 
method. The £e, concerned with flow rate of the curved elliptic 
duct, is tabulated for engineering reference, as well. The so
lution of flow and heat transfer in the curved elliptic duct is 
essential to various engineering problems. 
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A Numerical Study of Laminar 
90-Degree Bend Duct Flow With 
Different Discretization Schemes 
Three different discretization schemes were used to study the flow in a 90-degree 
bend square duct. The numerical method consists of a general curvilinear coordinate 
formulation of the governing equations and a non-staggered grid for the variables. 
A stable method of implementing the higher-order schemes is proposed. The second-
order upwinding and QUICK schemes give results which compare more favourably 
with the experimental data than the first-order upwinding method. In 3-D flow 
problems, the grid-refinement is severely limited by the amount of computer storage 
and the use of higher-order upwinding schemes provides a better alternative in 
obtaining accurate flow predictions. 

1 Introduction 
Many practical engineering problems require solutions to 

the complete Navier-Stokes equations in three-dimensional 
form, often in a complex domain. Solutions to the elliptic form 
of the 3-D Navier-Stokes equations are difficult to obtain since 
the amount of computer memory and CPU time can be quite 
extensive. For 2-D flows, the accepted practice has been to use 
a second-order finite difference analog for the diffusion terms 
and, for stability reasons, a first-order upwinding analog for 
the convection terms. Although it solves the stability problem, 
first-order upwinding degrades the accuracy of the solution 
due to numerical diffusion. Therefore, extensive grid refine
ment is required for complex flow problems (De Vahl and 
Martinson, 1976). For 2-D flows this is not a serious obstacle 
since the grid-refinement is not costly but grid refinement can 
be expensive for 3-D flows. In order to capture the details of 
the flow field, the number of grid points must be increased in 
all three directions, and often the maximum number of grid 
points is limited by the available amount of computer memory 
or reasonable CPU times. An alternative approach, which is 
computationally more intensive, is to use a more accurate, 
higher-order numerical approximation for the convective terms. 
Higher order methods can give significantly more accurate 
results using reasonable grid densities compared to the first-
order methods. 

The necessity for more accurate, higher-order upwinding 
schemes is clearly shown in the 3-D elliptic treatment of curved 
duct problems (Regio and Camarero, 1987; Humphrey et al., 
1977). Due to the presence of a centrifugal force created as 
the fluid travels through the bend, a helical secondary flow 
pattern develops which persists for several hydraulic diameters 
downstream of the bend. Previous numerical results (Regio 
and Camarero, 1987; Humphrey et al., 1977), using the first-

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
October 26, 1989. 

order upwinding and hybrid methods, showed that only qual
itative agreement could be achieved between the numerical and 
experimental results. 

In this paper, two different higher-order upwinding methods 
are evaluated. QUICK (Leonard, 1979) (Quadratic Upstream 
Interpolations for the Convective Kinematics) is a third order 
accurate method (Pollard and Siu, 1982; Huang et al., 1985; 
Shyy, 1985). For many complex flow problems, QUICK pro
vides accurate results without extensive grid refinement. The 
existing literature for the QUICK scheme applied to 3-D flows 
is not extensive. Only a few papers, which consider the cubic 
cavity problem in the Cartesian coordinate system are available 
(Freitas et al., 1985; Gaskell et al., 1987). The alternate higher 
order method is the second-order upwinding method explored 
by Shyy (1985) for 1-D and 2-D test problems and compared 
to other discretization schemes. 

The test problem considered in this work is the 90-degree 
bend square duct which has been studied experimentally and 
numerically by Humphrey et al. (1977). Their numerical results 
show that even with extensive grid refinement, the results were 
only in "reasonable" agreement with the experimental data. 
Especially at the 60 and 90-degree positions, from the beginning 
of the bend, the discrepancy between the experimental and 
numerical results was significant. 

The problem is solved using generalized curvilinear coor
dinates with a non-staggered arrangement for the primitive 
variables on the grid nodes. The momentum interpolation 
method (Rhie and Chow, 1983) was used to determine the 
correct cell face velocities. The SIMPLEC (Van Doormaal and 
Raithby, 1984) algorithm, a variant of the SIMPLE algorithm 
(Patankar, 1981), was used to find the pressure and velocities 
which satisfy continuity. 

The main issues addressed in this paper are the accurate 
modelling of the 3-D flow phenomena and the higher-order 
discretization of the convective terms. In the next section a 
brief description of the numerical method is given and the 
three discretization schemes (first-order upwinding, second-
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Fig. 1 Control volumes in the physical space (x, y, z) and transformed 
space (£, i), r ) 

Out 

:J 
order upwinding and QUICK) are discussed. A method of 
discretizing the higher-order schemes is presented. A more 
comprehensive description of the method used and the results 
of 2-D test problems are given in Yeo (1989). Finally, the 
numerical results obtained using the different discretizations 
will be compared to the available experimental data. 

2 Governing Equations and the Model Problem 
The flow field considered is laminar and steady. The gov

erning equations, representing the conservation of mass and 
momentum, in the Cartesian coordinate system are 
Continuity 

d 
(pud dXi 

= 0 (1) 

Momentum 

dP d 
( p l , ^ ) = - to (

+ to , ^ 
d 

— (pUjUj) = - — + — \n 
dXi dXj dXf \ dXi/ 

Equations (1) and (2) can be put into a more general form. 

du\ 
(2) 

(pW,#) = a$ 
+ s (3) 

dx, v r " ' ' ~ ' dXj \ dXj^ 

For the momentum equations, T* represents the viscosity, s* 
the pressure gradient source terms, while in the continuity 
equation $ = 1 and s* = 0. 

Equations (l)-(3) as written above, can only be used to solve 
problems in Cartesian coordinates. The equations can be trans
formed to the generalized curvilinear coordinate system by 
applying the general transformation e,- = e,-(x/) which is illus
trated in Fig. 1. 

For the source terms (by chain rule differentiation) of Eq. 
(3), 

dF^dFd^ 

dXj dej dXj 

For the transport terms (conservative transformation) 
(Thompson et al., 1985) of Eq. (3), 

dF__l 
dXj J 

where J is the Jacobian of the transformation defined as the 
determinant of the Jacobian matrix (Aris, 1962) 

T (x,y,z) 

Otj 0Xj 

(4) 

(5) 

M,r) 
The resulting transformed Eq. (3) is 

d d 

Otj 06; 
r V J de 

+ s*S 

(6) 

(7) 

Fig. 2 90-degree bend square duct 

(J) and g'J is the contravariant metric tensor defined by 

U^l^uj 
dXj 

dxk dxk 

The continuity equation becomes 

d 

de, 
( I / , )=0 

(8) 

(9) 

(10) 

U/ represents the contravariant velocities scaled by the Jacobian 

The advantage of the above formulation is that problems in 
any arbitrary domain can be solved on a regular grid system. 
For a more detailed discussion of the transformation and the 
metric tensors see Thompson et al (1985) and Aris (1962). 

90-Degree Bend Square Duct. Humphrey et al. (1977) car
ried out a detailed experimental analysis of laminar flow in a 
90-degree bend (Fig. 2). Their velocity measurements will be 
compared with the numerical predictions of this study. Nu
merical comparisons to these experiments have also been made 
by Humphrey et al. (1977) and Rhie (1985), who used 60 x 
15 x 10 and 50 x 22 x 15 grids respectively. The Reynolds 
number of the flow, based on the hydraulic diameter, was 790. 
The Dean number was De = Re(d/2RC)W2 = 368 where d is 
the hydraulic diameter and Rc is the mean radius of curvature. 
The longitudinal velocities were measured using a laser doppler 
anemometer, but the other velocity components were not meas
ured. 

At x = - 5, (5 hydraulic diameters before the bend) a fully 
developed velocity profile was observed. As the fluid travelled 
through the bend, there was an acceleration towards the outer 
radius wall and deceleration near the inner radius wall. A small 
longitudinal recirculation was observed immediately into the 
bend, near the outer corners of the duct. The secondary flow 
pattern was not experimentally investigated; only numerical 
results were given. Numerical results on the 90-degree plane 
showed the presence of two counter-rotating vortices each fill
ing half of the plane. 

In this work, the presence of a symmetry plane is taken into 
consideration and only half of the domain is discretized. The 
boundary conditions are: 

564 / Vol. 113, DECEMBER 1991 Transactions of the ASME 

Downloaded 02 Jun 2010 to 171.66.16.104. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



WW 

*BB 
Fig. 3 Computational molecule with points on solid lines used in TDMA 
sweep and points on dotted lines used with source terms 

.J@*~ 

/ 0 

Or-

WW w 
w 

u w 
Fig. 4 Points used in discretization schemes: (a) first order upwinding, 
(b) second-order upwinding, (c) QUICK 

at the inlet (*= - 5 ) : U, V, W = fully developed laminar 
profile 

at the walls: U, V, W = 0.0 

at the symmetry plane (z = 0): 

^ = 0.0, ™ 
dr ' dr 

o.o, w = o.o 

at the exit O = 10): 
dU 

de = = 0.0, 
dV dW 
— = 0.0, —-- = 
de de 

0.0 

Three different grid densities are used to solve the problem: 
40 x 17 x 11 (e X ?) X T), 61 X 23 X 17, and 70 x 25 X 
19. The highest grid density is used to check the grid inde
pendence of the predicted velocities. 

3 Numerical Method 
The solution domain is divided into a number of control 

volumes (Fig. 1). In the physical space coordinates a control 
volume can take any arbitrary shape, while in the transformed 
domain, a control volume is rectangular parallelepiped with a 
uniform grid spacing (Ae = A?; = AT = 1.0). 

In order to obtain the discretized equation set, Eq. (7) must 
be integrated over the control volume. The integration process 
is illustrated using the convection and diffusion terms. 

b •>* J » «t \ de/ 

rVi* rY'J ?5) 
de 

/ IV. 

A7?Ar ( i i ) 

The derivatives in Eq. (11) are approximately by second-order 
central differences 

Ae 

The cross derivatives which arise in Eq. (7), as the result of 
nonorthogonality of the grid, are treated in a similar manner 
as Eq. (11). However, in order to retain the 7-point compu
tational molecule shown in Fig. 3 which can be conveniently 
treated by TDMA (tridiagonal matrix algorithm) based iter
ative solvers, the nonorthogonality terms are included with the 
source term. 
For the first convection term, 

de 
(pU<S>)dedT}dT = [(pU<S>)e- (pU^)w]Ar,AT (12) 

The discretized equation will have the following form. 

Ce*-s*)*P= 2 ] Affy + st i = E, W, N, S, T, B (13) 

The coefficients B$, Af and st will depend upon the method 
used to approximate ie and $w in Eq. (13). Different methods 
discretizing the convection terms are discussed later. 

The coupled set of Eqs. (13) are solved iteratively and in 
order to obtain convergence must be under-relaxed. Using the 
relaxation factor a (0.7 in this work) 

* P = a$?.ew + ( l -a)*?, l d (14) 

In the solver, the block correction procedure is carried out in 
alternating directions before the line-by-line sweep also in al
ternating directions (Patankar, 1981). In the line-by-line sweep, 
a method similar to Stone's partial cancellation was used to 
accelerate convergence (Van Doormal and Raithby, 1984). Only 
a couple of sweeps were necessary to obtain a significant re
duction in the residual. The requirements for the convergence 
of the solution are diagonal dominance and positive matrix 
coefficients (Patankar, 1981). 

In order to obtain the solution to the elliptic form of Navier-
Stokes equations some method which enforces continuity must 
be used. The SIMPLEC (SIMPLE Consistent) method obtains 
corrections to the velocities and pressure by solving a Poisson-
type equation (Van Doormal and Raithby, 1984). With a non-
staggered grid system, a special treatment is required to obtain 
the cell face convection quantities to prevent the "checker
board" type oscillation (Patankar, 1981). The cell face con-
travariant velocities are obtained using momentum interpo
lation (Rhie and Chow, 1983; Mujamdar, 1988). The 
coefficients are linearly interpolated, but neighboring cell node 
pressures are used rather than averaging the pressure gradients 
for the control volumes. This enforces strong velocity-pressure 
coupling. The cell face convection quantities are also relaxed 
(Mujamdar, 1988) to obtain convergence. 

First-Order Upwinding. Central differencing of the con
vection terms results in coefficients which become negative 
when the flow is convection dominated. As a result, the di
agonal dominance criterion can not be met and this scheme 
could not be used with the TDMA based solvers. While con
verged solutions may be obtained with other types of solvers, 
which do not require diagonal dominance, the solutions con
tain unrealistic oscillations (Leonard, 1979; Shyy, 1985). The 
first-order upwinding method was proposed as a method to 
overcome the difficulties with central differencing. The re
sulting discretized equations are diagonally dominant and give 
physically smooth solutions. In Fig. 4, the first order up-
winding method is graphically presented. For the west cell face, 
the cell face value is assumed to be the value of the upstream 
node. For the east and west faces 
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LDA(Humphrey et. al) 
First-Order Up winding 
Second-Order Upwinding 
QUICK 

0.50 
Dislance(r-fi)/(ro-ri) 

Fig. 5(a) Comparison of results at the 90-degree plane along the central 
(symmetry) plane within the duct 
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-— First-Order Upwinding 

Second-Order Upwinding 
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Fig. 5(b) Comparison of results at the 90-degree plane along the plane 
halfway between the symmetry plane and the outside wall within the 
duct 
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Fig. 6(a) Comparison of results at the 60-degree plane along the central 
(symmetry) plane within the duct 

LDA(Humphrey et. al) 
First-Order Upwinding 
Second-Order Upwinding 
QUICK 

0.25 0.50 
Distance(r-ri)/(ro-ri) 

Fig. 6(D) Comparison of results at the 60-degree plane along the plane 
halfway between the symmetry plane and the outside wall within the 
duct 

4 = 

Ue>0 

Ue<0 

Uw>0 

(15) * P Uw<0 

The coefficients in Eq. (13) will be 

At = De+l-CE,0.0] 

A%,=Dw+[CW,0.0] 

A%=Dn+[-CN,0.0] 

Af=Ds+[CS,0.0] 

Af = D,+ [-CT,0.0] 

At = Db+[CB, 0.0] 

Bf=Y,Af 

where 

[ ] maximum operator 

Dx diffusion coefficient, e.g., De= (T*gnJ)e 

CX convection coefficient, e.g., CE=(pU)e 

Although smooth converged solutions can be obtained with 
first order upwinding, extensive studies (De Vahl Davis and 

(16) 

Mallinson, 1976; Huang et al., 1985; Shyy, 1985) indicate that 
the method fails to give accurate solutions at high Re numbers. 
Due to false diffusion, the strength of motion is under-pre
dicted. For recirculating flows, the method predicts weaker 
vortices and sometimes an incorrect flow field (De Vahl Davis 
and Mallinson, 1976). 

Second-Order Upwinding. A better approximation of the 
cell face value would be to use two upstream nodal values to 
determine the cell face value (Fig. 4). For the east and west 
faces 

* , = 
1.5*P-0.5*K, 

1 .5*^ -0 .5$^ 

Ue>0 

U„<0 

(17) 
1 . 5 * ^ - 0 . 5 * ^ U„>0 

: 1 . 5 * p - 0 . 5 * £ U„<0 

An upwinding formulation was used when implementing this 
method in the computer code. The coefficients are the same 
as Eq. (12). The equations for $e, $„, and 5* are 

= $P+Se; Se = 0.5($P-<i>w) Ue>0 
- $ £ + S e ; Se = 0.5($E-$EE) Ue<0 

>f>w+Sw; Sw = 0.5($P-i>w) U„>0 

* , 

<& = 
<f>P + Sw; SM, = 0 .5 ($ P -* £ ) U„<0 (18) 
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Fig. 7 Velocity vectors in the plane z = 0.485 showing logitudinal 
recirculation (between 0 degree and 20 degree planes along the duct) 

st = st+ (CW-S„-CE-Se) + (CS-SS 

-CN.S„) + (CB'Sb-CT-S,) (19) 

QUICK. In the second-order method two upstream nodes 
are used. If a third node (see Fig. 4) is included, a better 
approximation can be obtained, and is equivalent to fitting a 
polynomial, $ e = C\ + C2e + C3e

2, with upstream weighting. 
The truncation error is third order and the false diffusion error 
is reduced significantly with this method (Leonard, 1979; Pol
lard and Siu, 1982; Huang et al., 1985). For east and west 
faces the approximations for $ are 

* e = 

- ( * z ? + * p ) - - ( $ £ + * ^ - 2 * p ) Ue>0 

- ( * £ + * P ) - - ( $ P + * E E - 2 $ £ ) Ue<0 

- ( * H , + * P ) - - ( * P + * ^ - 2 * f K ) Uw>0 

^ ( $ ^ + * p ) - ^ ( $ p r + # i r - 2 * p ) Uw<0 (20) 

The QUICK scheme, depending on the method of implemen
tation may yield coefficients which can become negative and 
lead to convergence problems. In order to obtain convergence, 
a false transient term must be added or a very small relaxation 
factor must be used (Pollard and Siu, 1982; Freitas et al., 
1985). In order to achieve stability the scheme must be recast 
into a diagonally dominant form. An upwinding type for
mulation was used (Eq. (21)) to overcome the stability problem. 
The source term due to QUICK is sufficiently small and will 
not significantly hinder convergence. This approach is much 
less complicated than the QUICKE or QUICKER formulations 
of Pollard and Siu (1982). 

$ = 
$ P + Se; 5, = - ( 3 $ i ? - 2 * p - * H , ) Ue>0 

<i>E + Se; Se = -(3<S>P-2$E-$EE) Ue<0 

4 = 
$!v+Sw; S,v = - ( 3 * p - 2 $ ^ - < W ) Uw>0 

* P + 5IV; S„ = -(3<f>w-2$P~$E) Uw<0 (21) 

4 Results and Discussion 
The numerical results at the 90 degree and 60 degree planes 

are plotted in Fig. 5 and 6 for the 61 x 21 x 17 grid with the 
experimental results of Humphrey et al. (1977). At the 90 
degree and 60 degree planes the first order upwinding method 

Fig. 8 Secondary flows in the 90-degree plane (left side is inner wall, 
right side is outer wall and bottom is symmetry plane): top, first-order 
upwinding; middle, second-order upwinding; bottom, QUICK 

results are consistent with previous work, i.e., the velocity 
profiles were not steep and the peak velocities were consistently 
under-predicted (Humphrey et al., 1977; Rhie, 1985). The re
sults obtained with the higher order methods are in excellent 
agreement with the observed experimental values at the 90 
degree plane. The higher-order methods under-predict the ve
locity in the symmetry line at the 60 degree plane [Fig. 6(a)]. 
The experimental results show a sharp rise in the velocity profile 
near the inner radius wall. In order to capture the sharp velocity 
profile, a much finer grid in the vicinity of the wall may be 
needed. 

The weak longitudinal recirculation zone, which was ob
served experimentally, is also determined numerically with all 
three discretization schemes. The stream wise velocity vector 
plot is given in Fig. 7 for the QUICK scheme. 

In Fig. 8 the vector plots of the secondary flow in the 90-
degree plane are given. The upwinding result indicates the 
presence of one vortex, while the higher-order schemes indicate 
a cellular-type flow pattern with weak secondary vortices. The 
upwinding result is consistent with other published results 
(Humphrey et al., 1977; Mujamdar, 1988). The higher-order 
upwinding results indicate a more complicated flow pattern 
which is consistent with the phenomenon first studied by Dean 
(1927). If a critical Dean number (which indicates the ratio of 
the curvature effect to the viscous effect) is exceeded, the 
secondary flow field is unstable and results in the development 
of a second stable laminar flow pattern which consists of sev
eral vortices superimposed on the main flow (Nandakumar 
and Masiliyah, 1986). This phenomenon was observed by Cheng 
et al. (1977) using flow visualization studies which showed 
complex flow patterns at high De numbfers. 

In Fig. 9 the effect of grid refinement for the three schemes 
is shown at the 90 degree symmetry plane. The first-order 
upwinding scheme solution is not grid-independent and changes 
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2.0 Conclusions 

Distance{r-ri)/(ro-ri) 

Fig. 9(a) Effect of grid refinement in the 90-degree plane for first-order 
upwinding 

2.0 H 

Dislance{r-ri)/{ro-ri) 

Fig. 9(6) Effect of grid refinement in the 90-degree plane for second-
order upwinding 

2.0 H 

0.00 0.25 0.50 0.75 1.00 
Oistance(r-ri)/(ro-ri) 

Fig. 9(c) Effect of grid refinement in the 90-degree plane for QUICK 

significantly as the grid is refined. The higher-order upwinding 
scheme solutions at the lowest grid density are very similar to 
those at the highest-grid density and the 61 x 21 x 17 grid 
shows near grid independence of the solutions. It is difficult 
to achieve grid independence, especially with highly convected 
flows in 3-D. 

A stable method of discretizing higher-order schemes was 
used to study the flow in a 90-degree bend. The results show 
that the higher-order schemes were able to predict the exper
imentally observed trends more accurately than previous nu
merical solutions. Although the higher-order schemes are more 
expensive computationally, the accuracy obtained with the 
schemes makes them a worthwhile alternative method. The 
advantage is especially true in 3-D flows in which the grid-
refinement is limited by the available computer memory. 
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Improving Zielke's Method of 
Simulating Frequency-Dependent 
Friction in Laminar Liquid Pipe 
Flow 
Zielke's technique of using a method of characteristics to simulate transient phe
nomena of a liquid transmission line is accurate, easy to apply to complicated systems 
and therefore, frequently used. However, it requires a very large amount of com
putation time and computer storage to simulate frequency-dependent friction in a 
transient liquid flow. Searching for a way to counteract these disadvantages, the 
authors took note of the fact that the weighting function, which is the root of the 
above problems, is given by exponential functions or other functions depending on 
dimensionless time. In order to perform mathematically equivalent calculation with
out approximations, they have developed a new method which requires much less 
computation time and computer storage than Zielke's method. The calculation 
process is shown by a block diagram to facilitate visual understanding of the method. 

1 Introduction 
The characteristics of a transient pipe flow influence the 

dynamic performance of an oil hydraulic system. It is thus 
important to clarify transient flow in an oil hydraulic pipeline. 
This topic has been studied by many researchers. A model 
which considers transient two-dimensional laminar flow pre
dicts experimental results accurately and is therefore often used 
(Goodson and Leonard, 1972). There have been two basic 
approaches based on this model for determining the dynamic 
response of a liquid pipeline: an analytical method developed 
by Brown (1962) which utilizes Laplace transformation, and 
a computer simulation developed by Zielke (1968) using the 
method of characteristics. The effect of fluid viscosity is com
pletely taken into account by including a frequency-dependent 
friction term at the wall. Zielke related the headloss due to the 
friction to the instantaneous mean velocity and to weighted 
past velocity changes. 

The simulation method can be applied easily to a pipeline 
with complicated boundary conditions and is therefore very 
useful (Suzuki, 1989 and 1990). However, much computer time 
and a large amount of storage are required when the headlosses 
due to fluid friction are calculated. Furthermore, the computer 
running time and storage required to perform each time step 
increase without limit as the number of time steps increases. 
Elimination of this shortcoming is desirable. Trikha (1975) 
approximated the weighting function which causes this short
coming, by a summation of exponential functions which de
creased the amount of calculation and the required computer 
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Tokyo 180. 
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storage to a low level. Bratland (1986) proposed a new method 
without using a method of characteristics. He discretized the 
physical system first, and then established a mathematical 
model of the discrete system. This model, known as the cyl
inder-model is simple, however, it can produce instabilities in 
the solution because it does not use a method of characteristics 
as Zielke's does. 

The weighting function of Zielke's method is expressed by 
a summation of exponential functions or other functions de
pending on the value of dimensionless time T. In this paper, 
calculations mathematically equivalent to Zielke's is performed 
in a much shorter computation time with much less computer 
storage than in Zielke's method. Such calculations can be han
dled easily by a personal computer. The three kinds of cal
culation methods are shown by a block-diagram representation 
of discrete time systems to facilitate visual understanding of 
the calculation process and to clarify the differences among 
them. 

2 Fundamental Equations 
The equation of motion and the equation of continuity for 

a one-dimensional model of a pipeline are given by 

dV dH , „ 

dH a2 dV „ 
dt g dx 

(1) 

(2) 

where hj- is the headloss due to fluid friction per unit length. 
Equations (1) and (2) become identical to equations of the two-
dimensional frequency-dependent model if h/(t) is given by 
the following equation, derived from the analysis of transient 
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Fig. 1 Characteristic lines on the x-f plane 

two-dimensional laminar flow (Zielke, 1969): 

8J> 4 V r dV 
W{t-u)~ (u)du 

8f 4u 
[ W(u 
Jo 

dV 
) — U-u)du, (3) 

where 

T=vt/R2, 

W(t) = W(r), 

= 0 . 2 8 2 0 9 5 T ~ 1 / 2 - 1.250000 + 1 . 0 5 7 8 5 5 T L 

+ 0 . 9 3 7 5 0 0 T + 0 . 3 9 6 6 9 6 T 3 / 2 - 0 . 3 5 1 5 6 3 T 2 

for T < T 0 = 0.02, (4) 

and 

- 2 6 . 3 7 4 4 T 
= e 

, „ - 7 0 . 8 4 9 3 T , „-135.0198r . „-218.9216r , -322.5544r 

^ e " ¥ for T > T 0 = 0 . 0 2 . (5) 

Through use of the method of characteristics (Streeter and 
Wylie, 1967), the partial differential Eqs . (1) and (2) can be 
converted into a pair of total differential equations, 

dV gdH , „ 
— ± - — + ghf=0, 
dt a dt 

dx 
— = ±a. 
dt 

(6) 

(7) 

As shown in Fig. 1, Eqs . (6) and (7) are integrated along the 
characteristic lines C+ and C~, respectively. A first-order finite 
difference-approximation is applied to Eqs . (6) and (7), 

VN- VR + ± (HN-HR)+gAtfifR = 0 (8) 

VN-V, (HN-Hs)+gAthfs = 0, (9) 

where At = Ax/a, Ax = L/n. The subscripts N, R, and S 
indicate the points at which the values of the variables are 
specified. With algebraic Eqs. (8) and (9), the unknown VN 

and HN are obtained from the known values at the points R 
and S. The computat ion time is controlled mainly by the cal
culation for h/ given by Eq. (3). 

3 Calculat ion M e t h o d for hf 

3.1 New Method. Integrating Eq. (3) at t = KAt by a 
first-order approximation, we obtain 

hf(KAt)=~-2 V(KAt)+^-2 J] [V((K-J+\)At) 
g& gK J=, 

V((K-J)At)}W\ \ J - ^ \ ^ (10) 

In Zielke's paper, a first-order difference approximation is 
used for the time interval of 2At, increasing J two units at a 
time. For simple treatment and accuracy, in this paper J is 
increased unit by unit , and a first-order difference approxi
mation is applied to the interval of At. If Eq. (10) is calculated 
faithfully in the conventional manner , all past velocities at 
each point until t = KAt are required, and these repeated 
calculation of the velocities takes quite a long time. Moreover, 
the amount of computer storage and computat ion time re
quired to perform each time increment step increases without 
limit as the number of t ime steps, K, is increased. A method 
of eliminating this shortcoming is proposed in this paper. 

The quantity W( (J - \/2)Af) in Eq . (10) is given by Eq. 
(4) or (5) according to the value of T. If JT is defined as the 
integer J which corresponds to the boundary TO = 0.02, 

fur- » „„ "At 
< 0 . 0 2 < - ^ - JT-\+l 

therefore 

/ 0 . 0 2 i r 1 
/ r = t r u n c + -

\ Atv 2 
(11) 

where trunc(x) denotes the maximum integer which does not 
exceed x. 

Thus, Eq. (10) becomes 

hf(KAt) = - ^ 2 V(KAt) + hn {KAt) + hn (KAt), (12) 

where hf\(K_At) and hf2(KAt) are distinguished by whether 
WI(T) OT_JV2(T) is used as thejyeighting function. Defining 
W,(t) = WI(T) and W2{f) = W2(T), we obtain 

N o m e n c l a t u r e 

hf = 

a = sonic velocity in fluid 
C~ = characteristic line 

D = inner diameter of line 
g = acceleration due to gravity 

H = head 
headloss due to fluid fric
tion per unit length 

JT = integer given by Eq. (11) 
K = number of time steps 
L = length of line 
A' = subscript denoting point N 
n = number of nodes along 

line 

R = inner radius of line 
R = subscript denoting point R 
S = subscript denoting point S 
t = time 

Uj = state variable defined by 
Eq. (15) 
average fluid velocity at 
line section 
initial value of average 
fluid velocity at the line 
section 

W = weighting function 

V = 

K„ = 

x = 

y< = 

At 

Ax = 

Vi = 

i)l = 
v = 

T = 

coordinate in axial direc
tion of the line 
state variable 
one-step delay 
time increment, equal to 
Ax/a 
increment in distance, 
equal to L/n 
constant given by Eq . (5) 
•mXuAt/R2 

kinematic viscosity of fluid 
dimensionless time, equal 
to vt/R2 
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hfi(KM) = \ 2 2 [V( (K-J+ l)At) 
4v 

gR2 
^y^KAt) (21) 

-vuK-nwWi J-2\At 

4v 
h/2(KAt)=—2 J] [V((K-J+l)At) 

-V{(K-J)At)Wi\ \J-2]At 

(13) 

(14) 

If Uj(KAt) is defined by Eq. (15) as JTstate variables which 
denote each velocity change at each point from the present to 
JT time intervals before, 

Uj(KAt) = V{ {K-J+ i)At) - V{ (K-J)At) ( / = 1 ~ JT), 

(15) 

then the following relations are obtained. 

ul(KAt) = V(KAt)-V((K-l)At) (16) 

Uj((K+l)At)^Uj^(KAt) (J=2~JT) (17) 
Using the definition of Eq. (15), we convert Eq. (13) into Eq. 
(18). 

hn(KAt)=^2 | ] uAKAt)wJ(j-^\AtJ. (18) 

Using Eq. (5) for W2(t) in Eq. (14) and defining TJ/ = rn x 

—2 At, we obtain 

hf2(KAt)=—2 2 [K( (A-- /+1)A0 
" y=7r+i 

- K((A--7)A0] XI «_,"'(J"0 = - ^ 2 ^ ^ ) ' <19> 
/ = i ^ / = i 

where ^-(JSAO are five state variables defined by 
K 

yAKAt)= YA [V((K-J+l)At) 
J=JT+l 

- V( {K-J)At)]e^((-y. (20) 

Therefore, from Eqs. (12), (18), and (19), 

hf(KAt)=-~ V(KAt)+~ ^ uAKADwJh-^JAt) 

hf({K+l)At)=—2 V((K+l)At) 
gR 

Av 
+-&?,uAW+Wt)Wl / - - \At 

gR 

4v 
+ —2"£iyi((K+\)At). (22) 

sR ,=1 

Then, assuming J' = J - 1, from Eq. (20), we obtain 
K 

yi((K+l)At)= 2 {V((K-J' + \)At) 

/ =JT 

-V{(K-J')At)]e-'>^'~l+l) 

= [V{(K-JT+l)At)-V((K-JT)At)]e-"^TJi+l) 
K 

+ , £ [V((.K-J' + \)At) 
]' =JT+l 

- V({K-J')At)]e'ri'iK.'Jy xe-"i (23) 

Applying the relations given by Eqs. (15) and (20) to Eq. (23), 
we obtain 

yi( (K+ l)At) =yi(KAt)e-"i +UjT(KAt)e~ '(-0. (24) 

Therefore, y, ((K + 1)A0 of Eq. (22) is obtained from uJT(KAt) 
and the value of y, at the previous time step. This computation 
is much easier than that of Eq. (20). The relations described 
by Eqs. (16), (17), (21), and (24) are shown in Fig. 2 by utilizing 
a block diagram expression for a discrete-time system. Here, 
z~l represents a one-step delay. This block diagram is com
posed of a nonrecursive part on the left side and a recursive 
part on the right side. 

Zielke's original method is shown in Fig. 3 using the relations 
described by Eqs. (12), (13), and (14). This block diagram is 
composed of only a nonrecursive part. Blocks of z~' continue 
rightwards without limit. 

3.2 Comparison With Other Methods. The new method 
is compared with other reported methods by showing them as 
block-diagram expressions for a discrete-time system. 

V(KM) 

C, -0.282095T-1/!-1.250000+1.057855-r1 '2 

+0.937500T+0.3966967J/2-0.351563r!, 

where r _ i^i(j_i) 

ItfiKAt) 

Fig. 2 Block-diagram representation of the new method 
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V{KM) 

tyKAt) 

, 0 . 0 2 J S ! 1 , 
J T . l I u n c ( __ + _ ) 

C, -0 .282095r~" 2 - l .250000+1.057855r" 2 

+0.937500T+0.396696T3/ : !-0.351563r (><JT) 

C, _e-MJH4r+|,-70.S4Slr+e,-lJS.I)18ar+|,-2W.911«r+(,-M!.5S«r ^JJ<j^ 

I / A l , . J_x 
w h e r e r = r ^ 1 ^ ,, > • 

R2 2 

Fig. 3 Block-diagram representation of Zielke's method 

V{KAt) -Q- 4v 

gfl2 

hf(KAt) 

Fig. 4 Block-diagram representation of headloss of steady laminar flow 
friction 

3.2.1 Steady-State Friction. If the headloss due to fluid 
friction per unit length, hf, is taken to be steady-state laminar 
headloss, it is given by Eq. (25), using only the first term of 
the right side of Eq. (3). 

hf(t)=—2V{t) (25) 

The relationship between hj and V of this equation is shown 
by block-diagram expression in Fig. 4. 

3.2.2 Trikha's Method. Trikha (1975) approximated 
Zielke's weighting function by three terms as shown by 

TF(T) = VVl(r) + W2(T)+W3(T). (26) 

Each term is the product of a constant and an exponential 
function as shown by 

w,(T) = m,e-"ir (/=1,2,3), (27) 

where m, and «,• are determined, so that the error will be small, 
by satisfying the conditions given by Trikha. The values are 
given in the table of Fig. 5. 

Then, j>,(0 is defined by 

,(,/*2)«-»> ?Z {u)du (/= 1,2,3). 
at 

yt(t) = m-,e " 

By Eqs. (26), (27), and (28), Eq. (3) becomes 

hfU) 

Therefore, hf(t + AO is given by 

^kv(t)+^i\yl(t)+y1(t)+yi(t)\. 
gR gR 

(28) 

(29) 

hf(t + At)=—2 V(t + At) 

4v 

'gR2 
\yl(t + At)+y2(t + At)+y3(t + At)]. (30)' 

Substituting / + At instead of t of Eq. (28), rearranging it and 
assuming At « 1, we obtain 

yi(t + At)=yi(t)e-"^/R2)At + mie-"'WR^A'/2) 

Assuming 
v At 

X[V(t + At)-V(t)]. (31) 

« 1 and e-»/<"'*2><A"'2> « l, we derive 

V(KAt) 

i 
1 
2 
3 

ni 

26.4 
200 

8000 

mi 

1 
8.1 

40.0 

Fig. 5 Block-diagram representation of Trikha's method 

ik 
Fig. 6 Pipeline system 

yi(t + At)=yi(t)e-"^/R)h' + m,[V(t + At)-V{t)]. (32) 

The hj-(t) is calculated at high speed using the relations given 
by Eqs. (29) and (32). This computation process is shown in 
Fig. 5 by a block-diagram expression. 

4 Results of Simulation 
Figure 7 shows the pressure fluctuation simulated by each 

method at the downstream end of the simple pipeline system 
shown in Fig. 6 when a valve at the downstream end is shut 
instantaneously. Parameter values are shown in the table in 
Fig. 8. The microcomputer NEC PC9801VM2 is used for com
putation. The language is Microsoft MS-FORTRAN. Double 
precision is used. It is well known that the agreement between 
experimental results and calculated results by Zielke's method 
is very good. In the figure, no difference can be distinguished 
between the results of the new method and those of Zielke's 
method. The results of Trikha's method and the method which 
uses steady-state headloss both differ greatly from those of 
the aforementioned two methods. The values at intervals of 
50 time increment steps are shown in Table 1 to distinguish in 
detail the difference between the two methods. It is seen that 
the results obtained by the new method and by Zielke's method 
agree for all the figures output by the computer. Therefore, 
it is confirmed by the simulation that the new method is math
ematically equivalent to Zielke's, as was already deduced the
oretically in section 3.1. By contrast, Trikha's method is an 
approximation of Zielke's. 

Figure 8 shows the relationship between computation time 
and number of time steps, K, where the times for compilation 
and linking are excluded. The new method requires more com
putation time than Trikha's, but much less time than Zielke's. 
The computation time for Zielke's method increases exponen
tially with the number of time steps, K. It increases linearly 
with K in the new method, as in the other methods. The reason 
is as follows. When h/is calculated by Zielke's method at each 
divided point along a pipeline, the required computation time 
increases exponentially because the velocity change, which must 
be multiplied by C, and summed, increases with the number 
of time steps. Furthermore, the flow velocity (change), which 
must be stored, increases with the number of time steps until 
it finally exceeds the available capacity of the computer storage, 
and computation can no longer be continued. 

In the new method, however, only the JT flow changes from 
Ui to UjT and the five variables from yx to y5, for a total of 
(JT + 5) so-called state variables, need to be stored for each 
divided point along a pipeline. Because they give all the in-

572 / Vol. 113, DECEMBER 1991 Transactions of the ASME 

Downloaded 02 Jun 2010 to 171.66.16.104. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



1 :New method 

2: Zielke 

Table 1 Comparison of simulated results 

3 :Trikha 

4 :Steady-state friction 

0 0.1 0.4 0.5 0.2 0.3 
i s 

Fig. 7 Head fluctuation at valve after instantaneous valve closure 

§, 1000 

Lra 

Dm 
i>m 2 / s 

a m / s 

V0 m / s 

71 

30.088 

0.0254 

39 .67x l0~ 6 

1324.356 

0.12 

20 

0 100 200 300 400 

number of time steps, K 

Fig. 8 Comparison of computation time (1) 

3 500 

0 

i m 

Dm 

v m 2 / s 

a m / s 

V 0 m / s 

n 

12.5 

0.008 

26 .0x l0~" 

1250.0 

0.80 

10 

100 200 300 

number of time steps, K 

Fig. 9 Comparison of computation time (2) 

formation required by Zielke's method, the amount of required 
computer storage does not increase to more than a constant. 
Each time-lag element shown by z~' in Fig. 2 requires one unit 
of computer storage. Therefore, problems such as having to 
abandon the computation halfway because of a shortage of 
computer storage capacity are avoided. Computation time does 
not increase exponentially because hj is obtained by multipli
cations and additions concerning a constant number of these 
state variables and the current flow velocity. 

K 
50 

100 

150 

200 

250 

300 

350 

400 

Head 3 m 
New method 

14.6394926066112 

37.4583217988436 

14.9335334239241 

36.6867184170422 

26.1166441615528 

22.6642561308133 

30.3956083019248 

20.7437216511604 

Zielke 

14.6394926066112 

37.4583217988436 

14.9335334239241 

36.6867184170423 

26.1166441615527 

22.6642561308133 

30.3956083019248 

20.7437216511604 

Figure 9 shows the computation time for a different param
eter. The computation time is reduced drastically only by the 
new method. This is because the value of JTcalculated by Eq. 
(11) becomes smaller and the number of iterations of calcu
lation is reduced. Thus this method can especially be used to 
advantage in the case of the parameter which makes JT small. 

5 Conclusions 
Zielke's technique of using the method of characteristics to 

simulate transient phenomena of a liquid pipeline is accurate 
and widely used. However, it requires very much computation 
time and computer storage because evaluation of all past ve
locity changes is required when headloss is calculated taking 
transient laminar flow into consideration. 

In this paper, it is clarified that a mathematically equivalent 
calculation without approximation can be computed in a shorter 
time and with less computer storage by improving Zielke's 
method. The new method eliminates the shortcoming of 
Zielke's method wherein the amounts of computer storage and 
computation time required to increase each time step increase 
without limit as the number of time steps increases. As a result, 
calculations which formerly required a large computer can now 
be performed easily on a personal computer. The calculation 
process is shown by block-diagram representation for a dis
crete-time system to make this concept more readily compre
hensible. 

References 
Bratland, O., 1986, "Frequency-Dependent Friction and Radial Kinetic En

ergy Variation in Transient Pipe Flow," 5th International Conference on Pres
sure Surges, Hannover F. R. Germany, Paper D2, pp. 95-101. 

Brown, F. T„ 1962, "The Transient Response of Fluid Lines," ASME Journal 
of Basic Engineering, Vol. 84, No. 4, pp. 547-553. 

Goodson, R. E., and Leonard, R. G., 1972, "A Survey of Modeling Tech
niques for Fluid Line Transients," ASME Journal of Basic Engineering, Vol. 
94, No. 2, pp. 474-482. 

Streeter, V. L., and Wylie, E. B., Hydraulic Transients, McGraw-Hill, New 
York, 1967. 

Suzuki, K., 1989, "Application of a New Pressure Intensifier Using Oil Ham
mer to Pressure Control of a Hydraulic Cylinder," ASME Journal of Dynamic 
Systems, Measurement, and Control, Vol. I l l , No. 2, pp. 322-328. 

Suzuki, K., 1990, "A New Hydraulic Pressure Intensifier Using Oil Hammer," 
ASME JOURNAL OP FLUIDS ENGINEERING, Vol. 112, No. 1, pp. 56-60. 

Trikha, A. K., 1975, "An Efficient Method for Simulating Frequency-De
pendent Friction in Transient Liquid Flow," ASME JOURNAL OF FLUIDS EN
GINEERING, Vol. 97, No. 1, pp. 97-105. 

Zielke, W., 1968, "Frequency-Dependent Friction in Transient Pipe Flow," 
ASME Journal of Basic Engineering, Vol. 90, No. 1, pp. 109-115. 

Journal of Fluids Engineering DECEMBER 1991, Vol. 113 / 573 

Downloaded 02 Jun 2010 to 171.66.16.104. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



V. C. Patel 
Professor. 

Fellow ASME 

J. Tyndall Chon 
Graduate Research Assistant. 

J. Y. Yoon 
Graduate Research Assistant. 

Department of Mechanical Engineering 
and Iowa Institute of Hydraulic Research, 

The University of Iowa, 
Iowa City, Iowa 52242 

Laminar Flow Over Wavy Walls 
The boundary layer over a wavy wall and fully-developed flow in a duct with a 
wavy wall are considered. Numerical solutions of the Navier-Stokes equations have 
been obtained to provide insights into the various steady flow regimes that are 
possible, and to illustrate the nuances of predicting flows containing multiple sep
aration and reattachment points. 

Introduction 
The literature in computational fluid dynamics abounds in 

studies related to the prediction of laminar separated flows by 
solution of the Navier-Stokes equations. By and large, most 
definitive studies have been confined to simple rectangular 
geometries, such as the driven cavity, forward- and backward-
facing steps, and obstructions in ducts. In many of these prob
lems, the point of primary separation is fixed by the geometry, 
and solutions are often obtained at rather small Reynolds num
bers. For the classical problem of predicting boundary-layer 
separation from a curved surface at large Reynolds numbers, 
however, there are very few reliable Navier-Stokes solutions 
of flows involving separation and reattachment. Such flows 
are analyzed, instead, by inverse and interactive solutions of 
the boundary layer equations. In the development of general 
and versatile numerical methods for Navier-Stokes equations 
it is obviously of interest to consider flows of the boundary 
layer type at high Reynolds numbers. The present study is 
motivated, in part, by this need. Therefore, we consider flows 
which could be regarded as more demanding test cases for 
numerical methods. This study also serves as a prelude to a 
companion study of turbulent flow, which is reported sepa
rately (Patel et al., 1991). 

We consider two model problems. The first is the flow past 
a flat plate with a sinusoidal cavity, as shown in Fig. 1, and 
the second is the flow in a straight duct with one of the walls 
becoming wavy after a development length sufficient to es
tablish a fully developed flow, as shown in Fig. 2. 

The reason for choosing the first problem is that, by suitable 
choice of the cavity depth, it is possible to examine flows with 
different separation patterns. In some respects this problem 
resembles the driven cavity, but the differences are more sig
nificant. Here we are dealing with a flow that originates from 
a well-known initial condition, namely, the Blasius solution. 

Boundary Layer 

Fig. 1 Boundary layer on a wall with a cavity; solution domain and 
notation 

I 

y 

Flow 

3X 

Flat Wall 

Wavy Wall ^ 

A A A A /VAT2a 

vVv/VVw 6X 
ft-

2A 
m ft 

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
October 23, 1990. 

Fig. 2 Flow in a channel with a wavy wall; solution domain and notation 
(not to scale) 

Also, it is a high Reynolds number external flow, with bound
ary layer separation and reattachment points not known a 
priori. The recovery of the boundary layer downstream of 
reattachment is also of basic interest. There exists a limited 
amount of experimental data (Saidi et al., 1987) for this con-
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figuration and, therefore, comparisons can be made to evaluate 
some aspects of the calculations. 

The second model problem is one of internal flow. Here 
again, the upstream conditions are well known and easily de
fined. The geometry is also relatively simple. The flow features 
of particular concern, both from numerical as well as physical 
viewpoints, are the adjustment of the initially fully developed 
flow to a spatially periodic condition and, for specific ampli
tudes, the occurrence of repeated separation bubbles. Such 
configurations are of interest in drag reduction and heat-trans
fer enhancement. While there is no detailed experimental data 
for this model problem, it serves to introduce the corresponding 
problem of turbulent flow, which poses additional challenges 
and for which quite extensive data have been gathered. 

The numerical method used here is basically that described 
by Chen and Patel (1987). The version employed here solves 
the full Navier-Stokes equations in primitive variables for un
steady, two-dimensional, incompressible flow in generalized, 
nonorthogonal coordinates. The momentum equations are dis-
cretized using analytic solutions of the linearized equations in 
each numerical cell, and the pressure-velocity coupling is made 
through the continuity equation using a modified version of 
the SIMPLER algorithm. Although the numerical method 
solves the unsteady-flow equations in a time-marching scheme, 
the present work is confined to steady flows; time is used as 
an iteration parameter to seek the steady-state solution. 

Boundary Layer on a Wall With a Sinusoidal Cavity 
Consider the geometry shown in Fig. 1, which is similar to 

the configuration in the experiments of Saidi et al. (1987). The 
boundary layer develops on a flat plate with a sinusoidal cavity 
of depth 2a and wave length X, beginning at a distance 3X from 
the plate leading edge. In the experiments, 2a/\ = 0.2, and 
the Reynolds number U0\/v = 10,760, U0 being the freestream 
velocity and v the kinematic viscosity. 

The selected solution domain is shown in Fig. 1. The up
stream boundary (x = 0), where the velocity components are 
specified according to the Blasius solution, is located at a 
distance of 0.5X from the plate leading edge. The downstream 
boundary is at x = 4.5X, which allows a recovery length of 
one wave length beyond the cavity. At this boundary, the 
parabolic condition of zero streamwise pressure gradient is 
imposed. In the direction normal to the plate, the boundary 
is placed at y = 3X, y being measured from the bottom of the 
cavity. It was verified that this is sufficiently far from the plate 
for the effects of the cavity to be negligible and uniform-flow 
conditions to be applied. On the plate itself, the no-slip con
dition is applied. Due to the ellipticity of the equations and 
the time-marching scheme used, initial conditions at every point 
in the flow field are formally required. In the approach used 
here, the solution is initiated by carrying out a parabolic march, 
starting from the upstream section x = 0, with the pressure 
set to zero throughout. 

The numerical grids were generated by solving two Poisson 
equations, following the method of Knight (1982). For the 
geometry of Saidi et al., solutions were obtained with 69 X 
35, 128 x 70, and 134 x 82 points, in the longitudinal and 
normal directions, respectively. The first grid was judged to 
be too coarse, while the last was the finest that could be ac
commodated on a CRAY XMP/48 supercomputer. In the fin
est grid, the points nearest the wall were placed at a 
nondimensional distance (y/X) of the order of 10"5. Solutions 
obtained with the finest grid will be presented here, but the 
results with the intermediate one, as noted later, were not 
substantially different. 550 iterations were performed, which 
took 12 minutes of CPU time. Satisfactory convergence was 
achieved in about 450 iterations. 

Figure 3 shows the solutions for the pressure and friction 
coefficients on the wall. All quantities are normalized by the 

2a/X=0.2 
.Iteration 4Q0_ 
Iteration 450 

..Iteration 500 
iteration 550 

Friction Coefficient 

Blasius Solution^ 

Fig. 3 Distributions of pressure and friction coefficients; note conver
gence history 

2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 
X 

Fig. 4 Streamlines of flow in the cavity 

reference velocity U0 and the wavelength X. The results may 
be compared with the Blasius solution (Cpo = 0, Cy0 = 0.664 
Rx~in) to gage the influence of the initial conditions and re
covery of the boundary layer downstream of the cavity. The 
streamlines are shown in Fig. 4. 

First of all, it is seen that there exists a small favorable 
pressure gradient almost up to x = 2.0, well ahead of the 
cavity. Such a gradient is observed also in the absence of the 
cavity and is associated with viscous-inviscid interaction which 
cannot be ignored at these low Reynolds numbers. In other 
words, first-order boundary-layer theory is still not applicable 
at these Reynolds numbers. The Blasius solution used as an 
initial condition is, therefore, an approximation. Figure 3 
shows, however, that the friction coefficient and therefore the 
velocity profile through the boundary layer is not affected 
much by this assumption. The influence of the start of the 
cavity, at A: = 2.5, is seen to extend only a short distance 
upstream, as a slight favorable pressure gradient. Once the 
flow enters the cavity, however, it meets an adverse pressure 
gradient, and shortly thereafter separates, as evidenced by the 
region of negative skin friction and backflow. As seen more 
clearly from Fig. 4, a second eddy also forms, so that the flow 
in the region 2.797 < x < 3.160 is again in the positive direction 
at the boundary, although isolated from the main flow above 
the cavity. Where this secondary separation zone ends, there 
is again a very strong adverse pressure gradient, and backflow 
at the wall causes another region of negative skin friction. 
Shortly before x = 3.50, which marks the end of the cavity, 
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the pressure gradient becomes favorable and reattachment of 
the primary separation occurs. Thus, the region of separated 
flow is very large, as it occupies almost the entire cavity. The 
flow separates first at x = 2.585, and the last point of at
tachment is at x = 3.358. Here we note that the separation 
and reattachment points predicted with the less finer (inter
mediate) grid were within 0.002 of the values quoted above 
for the finest grid. 

Figure 5 shows the profiles of the Cartesian velocity com
ponent u at eight x stations along the wall. The variable n is 
dimensionless distance along the curvilinear coordinate normal 
to the boundary. The data of Saidi et al. (1987) are also shown 
in the figure. It should be noted that these measurements were 
made with a single channel laser-Doppler velocimeter, without 
a Bragg cell to sense flow direction, and therefore, only the 
magnitude of u was determined. Consequently, the data are 
suspect at points within the cavity. 

The first profile shown is at a station (x = 1.96) before the 
influence of the cavity is felt, and exhibits the expected flat 
plate boundary layer behavior. The next station is at the be
ginning of the cavity (x = 2.50). The third station shown, x 
= 2.60, is just after the predicted primary separation point, 
and the calculations indicate slightly negative u velocity com
ponent close to the wall. At the following two stations, x = 
2.81 and 2.99, the flow near the wall is again in the forward 
direction, since it is within the secondary eddy, while the rest 
of the flow in the cavity is reversed. A strong shear layer is 
clearly evident around n = 0.15. By x = 3.20, the flow nearest 
the wall as well as in the cavity is again reversed, since this is 
beyond the zone of the secondary eddy. Finally, at x = 3.50, 
which marks the end of the cavity, the flow recovers from 
separation. As shown in Fig. 3, the recovery to Blasius con
ditions is not completed until much later, around x = 4.50. 
The agreement of the computed values of the Cartesian velocity 
component u with the experimental data is satisfactory at the 
start of the cavity, but thereafter the two disagree greatly within 
the cavity, presumably due to the lack of directional sensitivity 
in the experimental data as noted earlier. The comparison of 
x = 2.60 suggests that the calculations predict a somewhat 
earlier separation than that observed in the experiments. 

A parametric study was performed next, to determine the 
effect of varying the cavity depth while keeping the cavity 
location fixed. Three values of the quantity 2a/\ were used: 
0.02, 0.10, and 0.40. The smallest cavity showed no separation 
while the next indicated a single eddy. This is to be compared 
with the two eddies observed in the case 2a/\ = 0.20 discussed 
above. In all of these cases, no difficulty was encountered in 
obtaining a converged steady-state solution. This was not the 
case, however, for the deepest cavity considered, 2a/\ = 0.40. 

For this case, numerous calculations performed with dif
ferent grids and time steps failed to yield a stationary solution. 
Instead, in all attempts, the solution tended to become periodic, 
with a regular frequency, after an initial transient period. The 
periodicity, however, was confined to the flow in the cavity, 
with the flow upstream and downstream being independent of 
time. Within the cavity itself, two to three eddies were observed 
at various times in the oscillation cycle. Recall that a time-
marching numerical method capable of predicting time-varying 
flow is employed here. In the present case, the unsteadiness is 
self induced but its origin is not clear. The numerical tests 
performed, and the regularity of the solutions obtained, sug
gested the existence of two steady-state solutions, between 
which the numerical solution oscillated. 

In a recent paper, Rubin and Himansu (1989) have reported 
a similar behavior of numerical solutions for flow in sinusoidal 
cavities and tentatively attributed the oscillations to a physical 
instability, i.e., the tendency of the flow to amplify small 
disturbances. Somewhat related to this is the work of Nayfeh 
et al. (1988), who used interactive laminar boundary-layer the
ory to calculate the flow past bulges (hills) and dips (cavities) 
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x=1.96 

2.50 

o\ 

\ + 

3.30 

3.50 

Fig. 5 Velocity profiles; lines: calculations; symbols: data of (Saidi et 
al., 1987) 

in a flat plate and then applied linear stability theory to observe 
the response to small disturbances. Among other things, they 
showed that increasing the size of the separation bubble, by 
increasing either the height-to-wavelength ratio or the Reynolds 
number, led to increased growth rates of disturbances and 
earlier transition to turbulence. Obviously, these are issues 
requiring considerable further work. The numerical method 
employed here is a useful tool for the investigation of these 
aspects. 

Channel With a Wavy Wall 
Next, consider the internal flow in the duct of Fig. 2. Cal

culations were performed with two upstream conditions; 
developing flow with thin boundary layers at entry, and fully-
developed flow with a parabolic velocity profile at entry. 
Insofar as the effects of the wavy wall are concerned, the two 
sets of results are qualitatively similar and, therefore, only the 
second case will be discussed here. 
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Calculations were performed for a channel Reynolds num
ber, UH/v = 10,760, where C/is the average velocity and H( = 
X) is the channel height. This is the same value as in the case 
of the single cavity considered above. It should be noted, 
however, that this value is considerably higher than the Reyn
olds number at which transition is observed in a plane channel. 
Indeed, the value chosen here is of the same order as those 
used in studies of turbulent flow (see Patel et al., 1991). There
fore, the present solution should be regarded as an experiment 
designed to test numerical methods for separated flows. The 
solution domain is shown in Fig. 2. Six sinusoidal waves, with 
a depth-to-wavelength ratio 2a/\ = 0.20, are located on the 
lower wall in the region 3.0 < x < 9.0. The straight sections 
upstream and downstream of the wavy section are 3H and 2H 
long, respectively. At the upstream boundary (x = 0), the 
velocity distribution is parabolic and the flow is parallel. At 
the downstream boundary, the streamwise pressure gradient 
is assumed to be zero, corresponding to an exit into a reservoir. 
No-slip condition is applied at both walls. The grid in this case 
had 328 x 99 points, 50 along each of the six waves, and 99 
across the channel. The points nearest the walls are again at 
nondimensional distances of the order of 10"5. This grid is 
comparable to the one used in the previous example, and sim
ilar level of grid independence of separation and reattachment 
points was observed. 

As Fig. 6 shows, satisfactory convergence to steady state 
was achieved after about 550 iterations. This figure also shows 
a number of other important aspects of the flow. First, on the 
flat wall, the effect of the waves in the opposite wall is felt 
only through an increased pressure gradient and increased fric
tion coefficient. The total drop in pressure due to the wavy 
section indicates a substantial increase in resistance over that 
in fully-developed flow in a flat-walled channel. From the 
waveform of the pressure and friction distributions on the wavy 
wall, it is seen that the solution becomes spatially periodic after 
about the third wave. Note that, in the case of pressure, there 
is a superimposed constant pressure gradient. The spatial pe
riodicity was ascertained by comparing distributions of velocity 
components at corresponding locations in successive waves. 
This periodicity suggests that, if upstream and downstream 
effects of a wavy segment are not of interest, solutions for a 
single wave could be obtained by use of periodic boundary 
conditions, as has been done in many previous studies, for 
example, by Garg and Maji (1988) and Ralph (1987). 

An examination of the friction distribution reveals multiple 
sign reversals, indicating several zones of separation and ed
dies. In fact, there is a region of separation just ahead of the 
first wave and two eddies in each of the six wave cavities. This 
is seen from Fig. 7 in which are plotted the pressure and friction 
distributions, and the corresponding streamlines, over one 
wave, from the fifth peak to the sixth peak, i.e., 7.25 < x < 
8.25. The pressure in the eddies is nearly uniform except for 
changes associated with the primary separation and reattach
ment. The first separation takes place in a moderate adverse 
pressure gradient while there is strong adverse pressure gradient 
just before and after the last reattachment. The lack of strong 
pressure gradients accompanying the secondary separation and 
reattachment indicates that the secondary eddy is very weak. 
The friction coefficient under the eddies is very small except 
in a region ahead of reattachment, where it is large and neg
ative. 

Because the numerical solutions give the distributions of 
friction and pressure on both walls of the channel, it is of 
interest to evaluate the components of resistance associated 
with the two walls. Integration of friction and pressure coef
ficients on the lower, wavy wall over a wavelength gives a 
resistance coefficient, based on bulk velocity and channel 
height, of 0.00982. Of this, 0.00108 is due to friction and 
0.00874 to pressure. From the flat wall there is a contribution 
only from friction, and this is 0.00289. The total channel re-
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Fig. 6 Convergence of pressure and friction coefficients on the channel 
walls 

7.25 7.35 7.45 7.55 7.65 7.75 7.85 7.95 8.05 8.15 8.25 

Fig. 7 Pressure and friction coefficients, and flow streamlines in the 
fifth wave cavity 

sistance over a wavelength, therefore, is 0.01271. This may be 
compared with the well known plane Poiseuille solution for 
laminar flow in a channel, which yields, for the present Reyn
olds number, a value of 0.00223, with equal contributions from 
friction on the two walls. Thus, the wavy wall results in (a) 
an increase in friction on the opposite flat wall, (b) a decrease 
in average friction on the wavy wall, and (c) a significant 
pressure or form drag on the wavy surface. 

The results shown in Fig. 7 are, in general, quite similar to 
those observed in the case of the developing boundary layer 
over a single cavity considered above. The detailed velocity 
profiles were also found to have similar features and, therefore, 
are not shown here. Finally, it is of interest to note that, insofar 
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as the flow in a single cavity is concerned, the present results 
are consistent with those calculated by others (Sobey, 1980; 
Garg and Maji, 1988; Ralph, 1987), using quite different nu
merical methods, albeit for different amplitude-to-wavelength 
ratios and much lower Reynolds numbers. 

Conclusions 
Two flows involving wavy boundaries, a boundary layer and 

a channel, have been studied through numerical solutions of 
the Navier-Stokes equations. These flows were selected to min
imize the usual uncertainties associated with the prescription 
of boundary conditions because the upstream and downstream 
states are well known. Thus, it has been possible to isolate the 
problems of predicting separation and reattachment points. 
The range of flow phenomena observed suggests that these 
two problems are very effective test cases for numerical meth
ods. 

The method employed in the present study yielded stable 
and steady solutions for flows with multiple separation bub
bles. In the case of the boundary layer over a plate with a 
single sinusoidal cavity, the results compared favorably with 
the limited data that are available. At comparable Reynolds 
number and cavity depth, stable laminar solutions were also 
obtained in channel flow. However, there is no experimental 
data to validate these solutions but, as transition is known to 
occur at much smaller Reynolds numbers in a plane channel, 
it is unlikely that this flow is stable in reality. A parametric 
study revealed that for deep enough cavities, the flow tends 
to become unsteady, presumably as a result of an instability 
and transition to turbulence. This feature of the problem de

serves a more detailed analysis to separate the numerical and 
physical aspects. 
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Turbulent Flow in a Channel With 
a Wavy Wall 
A numerical method for the solution of the Reynolds-averaged Navier-Stokes equa
tions, together with a two-layer turbulence model, has been used to describe steady 
flow in a two-dimensional channel with a wavy wall. Comparisons of calculations 
with experiments demonstrate the effects of alternating pressure gradients induced 
by alternating surface curvatures, and multiple separations and reattachments. The 
numerical method and the turbulence model are shown to capture the overall features 
of such a flow, including the breakdown of the logarithmic law of the wall in strong 
pressure gradients and in separated flow. 

Introduction 
The study of flow over a wavy boundary is hardly a recent 

undertaking. It is of interest in the generation of water waves 
by wind, evolution of sand dunes in deserts and sediment dunes 
in rivers, melting of ice covers on rivers, enhancement of heat 
and mass transfer, and possibly drag reduction. There is ex
tensive previous work in most of these areas. Theoretical ap
proaches have included applications of linear stability theory, 
boundary-layer theory, solutions of the Navier-Stokes equa
tions, and solutions of the Reynolds-averaged Navier Stokes 
equations with different types of turbulence closure models. 
Periodicity is generally assumed so that solutions are obtained 
only for a single wave. Experimental studies have included 
field observations and laboratory investigations. In the latter, 
internal and external flows have been considered in addition 
to flow in open channels. 

From the perspective of viscous-flow theory, the flow over 
a wavy boundary, whether laminar or turbulent, is much more 
complex than that over a flat surface because of the additional 
parameters and flow phenomena that are involved. For ex
ample, for fully developed flow in a channel or pipe, we have, 
in addition to the Reynolds number, the ratios \/H and a/\, 
where a is wave amplitude, X is the wavelength, and H the 
channel height or pipe diameter. For developing boundary-
layer flows, the conditions of the boundary layer upstream 
and the number of waves must be considered. In either case, 
for wave amplitudes greater than some critical value at any 
Reynolds number, the flow involves multiple regions of sep
aration and reattachment. Description of turbulent flow past 
a wavy surface involves a number of challenges. In addition 
to the effects of the alternating favorable and adverse pressure 
gradients, and convex and concave surface curvatures on the 
turbulence, there is the difficulty of predicting the separation 
and reattachment points. For laminar as well a turbulent flows, 
there exists the possibility of self-induced unsteadiness of the 
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flow in the cavities and associated vortex shedding. To all of 
these complications must be added problems associated with 
moving and deforming boundaries, such as those at the surface 
of a liquid or at a sedimentary bed, and the evolution of 
waveforms of arbitrary shape. 

The present study is concerned with numerical solutions of 
steady turbulent flow in a two-dimensional channel with a fixed 
sinusoidally wavy wall. The study was motivated by the need 
for more comprehensive numerical models for some of the 
practical applications noted above. Of particular concern here 
is the description of the mean flow in the neighborhood of the 
wall in the presence of successive separations and reattach
ments. The channel configuration was selected, as against de
veloping boundary-layer flows, for several reasons, the most 
important being that it has been studied rather extensively over 
a number of years in a series of experiments conducted by 
Hanratty and his students (see Table 1). Another compelling 
reason is that this geometry represents an excellent test case 
for numerical methods and turbulence models as it avoids the 
usual uncertainties concerning initial and boundary conditions. 

The numerical method used here is a derivative of that de
scribed by Chen and Patel (1987) and Richmond and Patel 
(1991) for the solution of the Reynolds-averaged Navier-Stokes 
equations for unsteady flow in generalized, nonorthogonal 
coordinates. No simplifications or approximations are made 
in these equations other than those implicit in the turbulence 
model. The two-layer approach to turbulence modeling sug
gested by Chen and Patel (1988) has been used. In this ap
proach, the standard two-equation k-e turbulence model is 
combined with a simpler, one-equation model for the flow 
close to the wall. The momentum and turbulence transport 
equations are discretized using analytic solutions of the line
arized equations, and the pressure-velocity coupling is made 
through the continuity equation using the SIMPLER algo
rithm. Applications of this numerical method to other con
figurations with laminar flow are described in Patel et al. 
(1991). Turbulent flows over convex and concave surfaces are 
discussed in Richmond and Patel (1991) where it is shown that 
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Table 1 Summary of the Experiments of Hanratty et al. 
References 

Zilker et al. 
(1977) 
Zilker et al. 
(1979) 

Thorsness et al. 
(1978) 

Buckles et al. 
(1984) • 

Abrams et al. 
(1981, 1986) 

Frederick et al. 
(1986, 1986) 

Kuzan 
(1986) 

Measurements Made 

wall pressure, 
wall shear, 
mean velocity, 
turbulent velocity, 
flow visualizations 

wall shear 
mean velocity 

mean and fluctuating 
velocities and wall 
pressure 

mean and fluctuating 
wall shear 

mean and fluctuating 
velocities 

wall pressure, 
mean and fluctuating 
velocities, 
flow visualization 

Re 

6,000-
64,000 

11,000-
64,000 

24,000 

11,940-
245,000 

12,800 
77,600 

96,000 
17,000 
8,160 

2a/X 

0.0125 
0.03125 
0.05 
0.125 
0.20 

0.0114 
0.0125 

0.02 ' 

0.014 

0.03125* 
0.05 

0.125 
0.05 
0.20* 

Flow Features Observed 

linear shear stress response 
linear shear stress response 
instantaneous flow reversal 
separated flow 
separated flow 

linear shear stress response 
linear shear stress response 

separated flow 

linear shear stress response 

linear shear stress response 
nonlinear stress response 

instantaneous flow reversal 
instantaneous flow reversal 
separated flow 

'Present calculations were performed for these two cases. 

the turbulence model used here tends to overpredict the convex 
wall skin friction and underpredict that on the concave wall. 
Unfortunately, it is not possible to separate the curvature ef
fects from those of pressure gradients in the present case. 
Therefore, explicit curvature corrections are not included in 
the present work. 

Experimental Information 
As noted above, there have been a number of previous ex

perimental studies in turbulent flows with wavy boundaries. 
Examples of those limited to fixed boundaries include the work 
of Sigal (1971), Cary et al. (1980), who studied boundary layers, 
Hsu and Kennedy (1971) and Chauve and Schiestel (1985), 
who considered fully developed flow in circular pipes, and the 
extensive work of Hanratty et al., summarized in Table 1, in 
two-dimensional channels. Even for this last case considered 
here, there is a large body of experiments in which various 
aspects of the flow were studied. These experiments were all 
conducted in the same water-channel facility, although there 
were variations in the measurement techniques. In a rectan
gular channel, 2 in. high, 24 in. wide, and 35 ft. long, removable 
wavy surfaces were placed in the last 27 inches of the bottom 
wall. In all cases, a wavelength of 2 in. was used, with ten 
waves in the test section. The waves were sinusoidal, so that 
the surface height ys was defined by ys = a sin ax, where a = 
2TT/X is the wave number. Fully developed flow was obtained 
in the channel before the test section, and in all cases, spatially 
periodic conditions were found to have been established early 
in the wavy test section. Therefore, most detailed measure
ments were made only over a single wave. 

Table 1 summarizes the measurements made and the pa
rameters used in the various experiments, including the ratio 
2aA and the Reynolds number, Re = UH/v, based on the 
bulk velocity U, channel height H (= 2 in.), and the kinematic 
viscosity v. Note that Hfh = 1 in all the experiments. Table 
1 also notes the most important flow characteristics observed 
in the experiments. Depending upon the Reynolds number and 
wave amplitude, different flow regimes are possible. Figure 1, 
adapted from Frederick (1986), shows the boundaries between 
these regimes; av/uT being the reciprocal of the Reynolds num
ber based on the length X/2T and the wave-averaged wall shear 
velocity uT. As expected, a linear response is observed for small 
amplitudes and low Reynolds numbers. As both increase, a 
nonlinear response is observed. At any Reynolds number, there 
is a wave amplitude above which separated flow is observed. 
Needless to say, the experimentally established boundaries be
tween the regimes are not precise. 
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Fig. 1 Regimes of flow in the experiments of Hanratty et al.; after 
Frederick; conditions for present calculations indicated by solid sym
bols. 

Calculations and Results 
Two sets of calculations, corresponding to an experiment 

of Frederick (1986) in the linear response regime, and one of 
Kuzan (1986) in the nonlinear separated-flow regime, have been 
performed. These cases are identified in Table 1 and Fig. 1. 
Each calculation was performed in two parts, one for the 
upstream straight channel to establish the proper initial con
ditions and the other for a portion of the straight and the wavy 
sections. 

For the straight portion, a length of 80H was used, and 
calculations were made with a grid of 81 streamwise and 99 
cross-stream nodes, with the first grid point off the walls at 
y+ ( = uTy/v) around 0.01. Starting with approximate initial 
conditions at time zero, converged steady state solutions were 
obtained in about 100 iterations (time steps). Note that the 
distributions of velocity and turbulence parameters in fully-
developed flow at sufficiently large distances from entry, typ
ically 60 channel heights, should be independent of the initial 
conditions and become invariant with distance. This was as
certained in the present calculations. The velocity field and 
turbulence parameters thus calculated in the fully developed 
flow were used as the initial conditions for the subsequent 
wavy-wall calculations. The same distribution of grid across 
the channel was maintained in both calculations so that the 
initial conditions could be used without interpolation. It should 
be emphasized that this method of establishing initial condi
tions requires the specification of only the channel Reynolds 
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Fig. 2 Solution domain and grid tor 2a/A = 0.03125 

number, all other information being generated consistently 
from the solution of the governing equations. This removes 
the usual uncertainties about initial conditions and makes the 
present calculations truly predictive. 

In the presentation of the results, all quantities, including 
pressure and friction coefficients, are normalized by the bulk 
velocity (U) in the channel, the wave length (X = H), and 
the fluid properties (density p, and kinematic viscosity v). 

Wavy Wall With 2a/X = 0.03125, Re = 12,800; Attached 
Flow. The solution domain and grid used for this case are 
shown in Fig. 2. In the solution domain, an upstream section, 
4X in length, allows the flow to adjust to the wavy section, 
and a downstream section, of length X, is used for flow re
covery. The wavy section begins with a positive slope to match 
the experimental configuration. The initial conditions were 
applied at x = 0. Note that the distance y across the channel 
is measured from the bottom of the waves. 

The grid was generated by solving two Poisson equations, 
with a two-step transformation, following the method of Knight 
(1982). There are 328 x 99 grid points. Over each of the six 
sinusoidal waves in the lower boundary, there are 50 nodes. 
As will become evident from the results, the distance of the 
first grid point from each wall is such that there are several 
points within the viscous sublayer. It should be noted here that 
extensive grid-dependency tests have been performed in the 
course of previous studies employing this combination of nu
merical method and turbulence model (see, for example, Chen 
and Patel (1988), Richmond and Patel (1991), and Patel et al. 
(1991)), and the present grid was chosen on the basis of these 
studies to ensure that the results obtained were insensitive to 
grid refinement. 

Six hundred iterations were used, taking approximately 60 
minutes on a Cray XMP-48. Figure 3 shows the pressure and 
friction coefficients calculated after 450 iterations, at intervals 
of 50 iterations. The results are practically indistinguishable 
and show that satisfactory convergence was achieved after 
about 450 iterations. It is also seen that there is a pressure drop 
along the channel, superimposed on the changes in pressure 
over the boundary waves. Initially the pressure and friction 
coefficients on both the upper and lower boundaries coincide, 
as would be expected in a duct with flat walls. The influence 
of the wavy section is seen to begin upstream of its origin, 
which is at x = 4.0. Conditions at the upper boundary appear 
to be little affected by the wavy section. The behavior of both 
the pressure and the friction coefficients in the straight exit 
section imply that this section was not long enough to allow 
for complete recovery of the flow to straight-duct conditions. 

Figure 3 indicates that the flow becomes spatially periodic 
rather quickly, establishing almost fully-periodic conditions by 
the second or third wave. The spatial periodicity was ascer
tained by comparing the profiles of velocity components and 
turbulence parameters, such as the turbulent kinetic energy 
(Ar), the rate of energy dissipation (e), and the Reynolds shear 
stress (uv), at corresponding positions on successive waves. 

3a/X=0.03125 
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Fig. 3 Convergence ot pressure and friction coefficients, 2a/X = 0.03125. 
Note: Results for different iterations are indistinguishable in most re
spects. 

8.65 8.85 
X 

9.25 

Fig. 4 Pressure and friction coefficients over a single wave. 
Lines: calculations; symbols: experiment. 

The observed periodicity suggests that, if upstream and down
stream effects of a wavy segment are not of interest, solutions 
for a single wave could be obtained by use of periodic boundary 
conditions. However, such boundary conditions cannot be es
tablished without prior knowledge of the flow, particularly 
with regard to the turbulent quantities. Calculations of the 
type performed here are indeed necessary to obtain the proper 
boundary conditions if solutions are to be restricted to a single 
wave. 

The distributions of pressure and friction coefficients over 
the fifth wave, 8.25 < x < 9.25, are shown in Fig. 4, along 
with the wave profile. The pressure and friction coefficients 
show a phase shift with respect to the surface. The pressure 
lags the surface profile by about 200 deg whereas the friction 
anticipates it by almost 45 deg. The agreement between the 
calculated and measured values (Frederick, 1986; Frederick 
and Hanratty, 1986) of the friction coefficient is good except 
in the region 8.50 < x < 8.95, where the predicted values are 
larger. 
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Fig. 5 Velocity profiles at selected positions in a single wave. 
Solid lines: calculations; symbols: experiment. 

As in the laminar-flow calculations of Patel et al. (1991), it 
is of interest to evaluate the friction and pressure components 
of resistance associated with the two walls of the channel. 
Integration of friction and pressure coefficients on the lower, 
wavy wall over a wavelength gives a resistance coefficient, 
based on bulk velocity and channel height, of 0.00940. Of this, 
0.00718 is due to friction and 0.00222 to pressure. From the 
flat wall there is a contribution only from friction, and this is 
0.00756. The total channel resistance over a wavelength, there
fore, is 0.01696. This may be compared with the value of 
0.01554 for fully developed turbulent flow in a plane channel 
at Re = 12,800. Thus, the wavy wall results in (a) a slight 
(2.7 percent) decrease in friction on the opposite flat wall, (b) 
a somewhat greater decrease (7.6 percent) in average friction 
on the wavy wall, and (c) a significant pressure or form drag 
on the wavy surface. The net increase in total resistance over 
a plane channel is 9.1 percent. It is of interest to note here 
that the foregoing observations concerning the frictional and 
pressure contributions to the total drag of the wavy surface 
confirm the experimental findings of Cary et al. (1980) and 
Lin et al. (1984), who concluded that none of the sinusoidal 
models they tested resulted in a net drag reduction, over the 
range of parameters they investigated. 

Figure 5 shows the axial velocity profiles at stations one-
fifth of a wave length (72 deg) apart, beginning with the peak 
of the fifth wave at x = 8.25 and ending with the peak of the 
sixth at x = 9.25. Both linear and logarithmic plots are shown. 
In the latter, u+ = u/UT and y+ = UTy/v, where UT is the 
friction velocity based on the local wall shear stress. The data 
are those of Frederick (1986) and Frederick and Hanratty 
(1986), gathered over the eighth of ten waves. The profiles are 
shown only to about the middle of the channel, n = 0.5, n 
being the distance along the grid line originating from the wavy 
wall at the appropriate x station. The difference between this 
and the normal distance v is insignificant. In the experiments 
for this configuration, measurements did not extend into the 
top half of the channel. The first and last stations, labelled <j> 
= 0 and 360 deg, respectively, correspond to the wave crests. 

From the linear plots in Fig. 5 it is seen that the measured 
velocities are larger than the calculated ones for n greater than 
about 0.2. Because the duct used in the experiments had an 
aspect ratio (channel width to mean-depth ratio) of only 12, 
with an approach section 70 hydraulic diameters long and a 
test section 29 wavelengths long, it is possible that end-wall 
effects are responsible for these higher core velocities. Closer 
to the wall, but still outside the law-of-the-wall region, the 

582 / Vol. 113, DECEMBER 1991 Transactions of the ASME 

Downloaded 02 Jun 2010 to 171.66.16.104. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



agreement of the calculated and experimental results is good 
until about the trough of the wave, and thereafter the velocities 
are slightly overpredicted. 

It is important to emphasize here that the logarithmic plots 
of the calculated and measured velocity profiles in Fig. 5 were 
made using the calculated and measured local friction veloc
ities, respectively. This is different from the plots made by 
some previous investigators, for example, Chauve and Schiestel 
(1985), who employed the constant, wave-averaged shear ve
locity. While such plots are of interest in assessing the overall 
effects of the wavy wall 6n the velocity distribution, it is the 
format used here that reveals the validity or breakdown of the 
law of the wall. The present format provides the most direct 
comparison between predictions and measurements with re
spect to the wall shear stress and the near-wall velocity dis
tribution. Also shown in Fig. 5, by the dashed lines, is the 
standard logarithmic law: 

u+=-iny++B (1) 
K 

with K = 0.418 and B = 5.5. The first significant observation 
is that the standard law is clearly not applicable in regions of 
strong adverse and favorable pressure gradients. The calculated 
profiles follow the experimental trends rather well but do not 
completely match the data at all stations. Initially, at <j> = 0 
deg, the pressure gradient is mildly favorable (see Fig. 4) and 
the velocity distribution lies below the logarithmic law. By the 
next station, 0 = 72 deg, the pressure gradient is adverse and 
the profile lies above the logarithmic law. At the following 
station, 0 = 144 deg, the adverse gradient is strong and the 
friction velocity is near its minimum. Here, we observe the 
greatest departures from the logarithmic law as well as the 
greatest disagreement between the calculated and experimental 
values. This disagreement occurs in the region of strongest 
adverse pressure gradients and very low local wall-shear stresses, 
and stems from the difference between the calculated and meas
ured wall shear stress. In fact, the velocity profiles can be 
reconciled if the larger calculated value for the shear velocity 
is also used to plot the data. If difficulties of measuring wall 
shear stresses so close to separation are taken into account, 
the disagreement between the calculated and measured velocity 
profiles even in the region of strong adverse pressure gradients 
is not of great practical significance. As the peak in the adverse 
pressure gradient is passed, the velocity profile begins to shift 
back toward the logarithmic law, until 0 = 216 deg, where 
agreement is reestablished due to near zero pressure gradient 
at this location. At the next two stations, 0 = 288 and 360 
deg, the favorable pressure gradient causes departures of the 
velocity profiles below the logarithmic law, which the calcu
lations predict faithfully. These departures are quite similar to 
those which precede relaminarization of turbulent boundary 
layers under the influence of strong favorable pressure gra
dients (Patel and Head, 1968; Finnicum and Hanratty, 1988). 
Finally, note that the solution at the last station was found to 
be in excellent agreement with that at the first, confirming the 
spatial periodicity of the flow. 

In order to make a more detailed assessment of the turbu
lence model used in the present study, it is of interest to examine 
some further aspects of the results. Figure 6 shows the distri
butions of velocity (u + ) , the turbulent kinetic energy (k + = k/ 
£/T

2), its rate of dissipation (e+ -ev/Ur
4), and the Reynolds 

shear stress (uv+ =uv/UT
2), in wall coordinates, at three lo

cations along the wave. The three stations were selected not 
simply to avoid duplicating the results of Fig. 5, but because 
they depict the flow details where the local pressure gradient 
is nearly zero (0 = 36 deg), where it is adverse and strong 
enough to cause a significant departure from the logarithmic 
law as well as differences between the experiments and cal
culations (0 = 108 deg), and where the pressure gradient is 
favorable (0 = 324 deg). 

From the results of Fig. 6 it is clear that the turbulence 
parameters vary rapidly normal to the wall, through the sub
layer and the buffer layer, into the logarithmic region. There 
are also very rapid changes along the wall. The large gradients 
normal to the wall have presented great difficulties in the 
numerical integration of turbulence-model equations, partic
ularly the equation for e, in the so-called low Reynolds number 
or near-wall models (Patel et al., 1985). Replacement of the e 
equation by a. specified length scale in the near-wall region, 
following the suggestion of Chen and Patel (1988), has ob
viously alleviated this difficulty. In fact the results show no 
discontinuities stemming from the combination of a one-equa
tion near-wall treatment with the standard two-equation (k-
e) model farther out. This is due to the manner in which the 
two models are matched in the fully-turbulent region. There 
is little direct experimental evidence to confirm all of the pre
dicted changes taking place in the near-wall distributions of 
the three turbulence quantities. However, at 0 = 36 deg, where 
the local pressure gradient is nearly zero, the results are similar 
to those found in a flat-plate turbulent boundary layer. For 
example, the peak values of k+ and e + , as well as the locations 
of those peaks, are in agreement with available near-wall data 
(Patel et al., 1985). Finally, it is of interest to note the impli
cations of the present results for the so-called "wall-function 
treatment" that is frequently employed to avoid numerical 
solution of the equations in the near-wall region. In this ap
proach, the boundary conditions are prescribed at some point 
in the full turbulent region, beyond the sublayer and the buffer 
layer, typically y+ > 60, by assuming that the velocity is given 
by the logarithmic law, Eq. (1), and the turbulence is in local 
equilibrium, resulting in k+ = C,,~1/2ande+ = 0y + ) - 1 , where 
C„ (= 0.09) is a constant. Obviously, the present results do 
not support such a practice. It is seen that pressure gradients 
have a very strong influence not only on the velocity distri
bution but also on the turbulence parameters. 

Wavy Wall With 2a/X = 0.20, Re = 8,160; Separated 
Flow. The calculations for this extreme case (see Fig. 1) were 
carried out with the solution domain and grid numbers similar 
to those used in the first case, except that the upstream and 
downstream straight sections were 3X and 2X, respectively (Fig. 
7). This change allowed a longer downstream recovery length. 
Figure 8 shows the pressure and friction coefficients after 550 
iterations, at intervals of 50 iterations. As in the previous case, 
the results are practically indistinguishable after 550 iterations. 
Again the solutions on the upper and lower walls are in agree
ment initially, but in this case the solution on the upper wall 
appears to vary more from a standard straight-duct behavior 
than in the previous case shown in Fig. 3. Recovery in the 
downstream section is more closely achieved. However, it is 
clear that a much longer section is required to reestablish 
straight-channel conditions. 

Comparison of Fig. 3 and 8 clearly indicates the additional 
complexities of the second case. Harmonic analysis of the two 
sets of results would confirm the classification of Hanratty et 
al. (Fig. 1), that the former shows nearly linear response while 
the latter is highly nonlinear. The calculations for the present 
case of lafk = 0.20 indicate flow separation not only in the 
wave cavities but also ahead of the first wave. The distributions 
of pressure and friction coefficients, and the calculated stream-

Tines, over the fifth wave, 7.25 < x < 8.25, are shown in Fig. 
9. Separation (S) is predicted at x = 7.33 and reattachment 
(R) at x < = 7.98. Measuring from the top of the upstream 
crest (x = 7.25), these points are located at Ax of 0.08 and 
0.73, respectively. Kuzan (1986) measured separation point at 
Ax = 0.12, with reattachment at Ax = 0.77. For the same 
configuration but a different Reynolds number, Buckles et al. 
(1984) measured separation at Ax = 0.14 and reattachment at 
Ax = 0.69. Thus, the predicted positions are in fairly good 
agreement with data. 
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(a) x = 8.35, <£ = 36 c 
(c) x=9. l5 , 4>=324° 

Fig. 6 Distributions of velocity (u), turbulent kinetic energy (k), Reyn
olds stress uv, and energy dissipation rate (e) in wall coordinates 

JSJ1TJ 

(b) x=8.55, <£ = 108° 

Integration of friction and pressure coefficients on the wavy 
wall over one wavelength gives a resistance coefficient of 
0.06972, of which, 0.00144 is due to friction and 0.06828 to 
pressure. Integration of friction on the flat wall gives 0.01224, 
and therefore, the total channel resistance over a wavelength 
is 0.08196. For fully developed turbulent joint in a plane chan
nel at Re = 8,160, the resistance coefficient is 0.01676. Thus, 
in the presence of separation, there is (a) a substantial (46 
percent) increase in friction on the opposite flat wall, (b) a 
dramatic decrease (almost by a factor of six) in average friction 
on the wavy wall, and (c) a pressure drag on the wavy surface 
that dominates the contributions from friction. The total re
sistance of the channel with a wavy wall is almost five times 
that of a plane channel. This is quite different from the sit-

—i 1 1 1 1 1 1 1 1 r-
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 

Fig. 7 Solution domain and grid for 2a/A = 0.20 

uation in the previous case where the flow remained attached 
throughout the channel. 

The velocity profiles at a few representative locations along 
the fifth wave are shown in Fig. 10. The data are due to Kuzan 
(1986). In these experiments, the measurements extended all 
the way to the opposite flat wall of the channel. In addition 
to the usual linear plots of velocity, Fig. 10 also shows the 
logarithmic plots. In these, only the results on the wavy-wall 
side, up to the velocity maximum, are shown, and the friction 
velocity UT is now based on the magnitude of the local wall 
shear stress, because it is negative in separated flow. It should 
be noted that this choice is made for convenience in the present 
context and should not be construed to give support to the 
existence of a law of the wall in separated flow. As before, to 
ensure most meaningful and critical comparisons, measured 
wall shear stresses were used to normalize the experimental 
data while calculated stresses were used to normalize the pre
dicted results. The usual logarithmic law, Eq. (1), is again 
included for reference. 

Figure 9 indicates that the flow at the first station, the wave 
crest, <j> = 0 (and 360) deg, is attached but recovering from a 
strong favorable pressure gradient (acceleration) that follows 
reattachment on the previous wave. From Fig. 10(a) it is seen 
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Fig. 8 Convergence of pressure and friction coefficients, 2al\ = 0.20. 
Note: Results for different iterations are indistinguishable in most re
spects. 
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Fig. 9 Pressure and friction coefficients, and streamlines over a single 
wave. Lines: calculations; symbols: experimental friction coefficient. 

that the velocity profile at the crest is predicted rather well 
except in the region close to the wall where much higher velocity 
is predicted. The plot in wall coordinates indicates only qual
itative agreement between the calculations and experiment. The 
observed differences may be due to local relaminarization as 
a result of the strong flow acceleration ahead of this station. 
At the next station, </> = 36 deg, the local pressure gradient is 
adverse, and the flow is on the verge of separation. The pre
dictions are in good agreement with experiment except when 
compared in the format of the law of the wall. The relatively 
large discrepancies observed in the latter is due, in very large 
measure, to the differences between the predicted and meas
ured wall shear stresses, as was also noted in the previous case. 
As seen from Fig. 9, the magnitudes of both are rather small, 
but the differences in them are magnified in the logarithmic 
plots. In the final analysis, these plots may not be the best 
gage of success, but they are useful in examining the near-wall 
details. The next station, cj> = 180 deg, lies at the middle of 
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the wave and in separated flow. Here also there is a strong 
adverse pressure gradient. The velocity profile is predicted 
rather well except within the separated zone. The extent of the 
separated region is underpredicted while the reverse flow ve
locity is overestimated. This is presumably related to the per
formance of the turbulence model for separated flow. The 
logarithmic plot for this station clearly shows the region of 
flow reversal although quantitative differences between the 
calculated and measured profiles persist due to the differences 
in the calculated and measured wall shear stresses. The next 
station, <j> = 252 deg, was selected because here the flow has 
just reattached. Again there is good agreement between the 
calculations and measurements. Because the local wall shear 
is very small at this location, the logarithmic plot is not par
ticularly reliable. However, the reattachment is clearly seen 
and the agreement in the sublayer is indicative of the numerical 
resolution of the flow very close to the wall. Finally, the results 
at the last section, <j> = 324 deg, located in a region of strong 
favorable pressure gradient, are quite similar to those at the 
wave crest (0 = 0 and 360 deg). 

Before closing this section, it is important to make some 
general observations concerning the results shown in Fig. 10. 
First, the breakdown of the usual logarithmic law, Eq. (1), 
observed in the first case, where the flow remained attached 
everywhere, is underscored by the results in separated flow. 
Thus, the use of wall functions is turbulent-flow calculations, 
which is even more prevalent for complex and separated flows, 
is a questionable practice. Secondly, the near-wall treatment 
used in the present turbulence model seems to reproduce all 
of the trends observed in the experiments. Thirdly, the disa
greement seen in the near-wall velocity distributions when 
viewed in law-of-the-wall coordinates are due more to the 
disagreement in the wall shear stress than a failure of the 
turbulence model in general. The wall shear measurements were 
made by determining the slope of the velocity profile at the 
wall, a procedure that is known to be prone to large errors, 
especially when the slope is small and the flow is not steady, 
as is the case in separated flow. 

Conclusions 
The flow in a channel with a wavy wall is obviously a chal

lenging test case for numerical methods and turbulence models 
because a variety of flow phenomena can be considered by 
changing the amplitude-to-wavelength ratio and there exist 
few, if any, uncertainties concerning the proper initial and 
boundary conditions required to carry out a truly predictive 
calculation. Although it has not been possible to separate the 
effects of surface curvatures from those of the strong pressure 
gradients that are present in this flow, the results presented 
here show that the present numerical method is quite successful 
in calculating flows with multiple separations and reattach
ments with a reasonable amount of computer time, and the 
two-layer turbulence model of Chen and Patel (1988) appears 
to capture most of the important physical features of such 
flows. The results also demonstrate, quite conclusively, the 
breakdown of the standard law of the wall in strong adverse 
and favorable pressure gradients, well before the onset of sep
aration or relaminarization, and therefore suggest that the wall-
function approach should be abandoned in favor of direct 
integrations to the wall. In this respect, as an alternative to 
wall functions, even simpler turbulence models, such as an 
eddy-viscosity model, are to be preferred. Finally, the overall 
numerical approach described here is general enough to begin 
a more in-depth study of the physics of flows over wavy walls 
of sinusoidal or arbitrary shape and extend the method to 
consider the many practical flow phenomena which involve 
wavy boundaries. An extensive parametric study will be re
quired, however, to explicate all of the effects of wavy bound
aries in a turbulent flow. 
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Application of ¥ Shape Riblets to 
Pipe Flows 
Pipes with V shape riblets were tested at Reynolds numbers between 5xl03 and 
4xlOA. All riblet pipes indicated some drag reduction. The model with h = 0.55 
mm and h/S = 0.483 showed the maximum drag reduction of 8 percent and the 
widest range of Reynolds number over which the riblet reduces drag. The riblet 
shape desirable for drag reduction in pipe flows was almost the same as that in flat 
plate boundary layers, but the value of S+ which provided the maximum drag 
reduction was quite different; S+ = 23 for pipe flows and S+ = 12 for flat plate 
boundary layers. 

1 Introduction 
The fact that the riblet can reduce turbulent frictional drag 

has been ascertained by many studies (Walsh, 1982, 1983; 
Pulles et al., 1989) and some flow models have been proposed 
to explain the mechanisms of the drag reduction by riblets 
(Bacher and Smith, 1985; Nakao, 1990). One of the next in
teresting steps is to apply the riblet to some industrial fields. 
In particular, application to pipelines is expected to provide 
major energy savings. However, most of the riblet studies were 
carried out in flat plate boundary layers with few works for 
pipe flows. Liu et al. (1989) tested pipes lined with riblet film 
and reported reduced frictional drag of 5 to 7 percent in the 
fully developed turbulent flow of water. However, they did 
not discuss the uncertainty of the results. 

The purposes of the present work was to investigate the 
performance of riblets for drag reduction in pipe flows through 
comparisons of riblet pipes results with those from a smooth 
pipe and study of the optimum riblet shape in pipe flows. 

2 Experimental Apparatus 
The experiments were carried out with air flow in PVC pipes. 

The Reynolds number of the present experiments varied from 
Re = 5 x 103 to 4 x 104. The schematic picture of the 
apparatus is shown in Fig. 1. The length of the test section 
was 40 D and the upstream side of the test section had the 
length of 120 D where D is the pipe diameter. The 14 pressure 
taps were positioned at 10 D along the smooth pipe to measure 
the pressure gradient along the pipe axis. The measured linear 
pressure gradients at the test section indicated the flow was 
fully developed and turbulent. The flow rate Q was regulated 
by the orifice plate placed after the blower and measured by 
the turbine meter placed 40 D downstream of the test section. 
The flow rate, the static pressures, and the temperature and 
the humidity of the air were measured for each experiment. 
An experiment comprised two steps: the smooth pipe experi
ment and the riblet pipe as inserts into the test section. These 
two sections were interchanged five times for each riblet model. 

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
January 3, 1991. 

The riblet pipes were made by the extrusion process. The 
cross sections of the riblet pipes and the smooth pipe were 
carefully measured at four different places by the profile pro
jector with the resolution of ±0.001 mm. The averaged values 
of the height (h), the spacing (S) of the groove, and the diameter 
(D) of each pipe are summarized on Table 1. The precision 

Table 1 The sizes and the configuration of riblet pipes tested 

MODEL 

1 

2 

3 

4 

5 

6 

SMOOTH 

h(mm) 

0.86 

0.68 

0.40 

0.55 

0.64 

0.55 

" " ™ 

s(mm) 

1.81 

0.71 

1.70 

1.14 

1.61 

2.04 

— 

D(mm) 

51.3 

50.7 

48.6 

51.2 

50.6 

51.3 

51.1 

h/S 

0.474 

0.96 

0.235 

0.483 

0.4 

0.27 
— 

BLOWER 
TURBINE 

METER 

fl 
TEST 

1 0 D SECTION 
i. ,j I 

r i p n 
n n 

PRESSURE TAP 

10D 

P6 A H 
JJ n n 
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T 40D T 40D I 40D 

ORIFICE 

Fig. 1 Schematic picture of experimental apparatus 

Journal of Fluids Engineering DECEMBER 1991, Vol. 113 / 587 

Copyright © 1991 by ASME
Downloaded 02 Jun 2010 to 171.66.16.104. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



(mmH 20) 

TEST SECTION 

P11 P 6 

fix 
S\l 

a-. 

X *s_ 

o : S M O O T H 

A : RIBLET 

" X A 

AX 

2 4 6 (m) 

Fig. 2 Pressure distributions along the axis of the smooth pipe and 
the riblet pipe. (Uncertainty of the static pressure: 0.105 percent for 95 
percent coverage. The bias error was not discussed in this figure because 
of the comparative measurements.) 
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Fig. 3 Comparison between the frictional resistances for the smooth 
pipe and those of the riblet pipe, MODEL 4 (Uncertainty for 95 percent 
coverage. The smooth pipe : ±1.32 percent, MODEL 4 : ±1.42 percent.) 

error limit of D calculated according to ANSI/ASME (1986) 
was 0.12 mm. 

3 Measurement of Frictional Resistance and Its Un
certainty 

The frictional resistance of a pipe, X, in fully developed 
turbulent flow is obtained from the following equation. 

\ = 2DA/(pU2) 

where A is the pressure gradient along the pipe axis, p is the 
density of the air, and U is the mean velocity of the pipe, 
which was calculated from the flow rate Q measured by the 
turbine meter as follows; 

4 

1 0 0 7V 

3 -

2 Jj 
r 

\ 

\ 

\ 

A: MODEL3 

x: MODEL 6 

i 

^0.3164Re-°-2 5 

i 
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Fig. 4(a) M Z:h/S = 0.235, M 6:h/S = 0.27 
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Fig. 4(b) M VMS = 0.474, M 2MS = 0.96, M 4;/i/S = 0.48, M 5MS = 
0.4. (Uncertainty for 95 percent coverage. M 1 : ±1.48 percent, M 2 : 
±1.49 percent, M 3 : ±1.36 percent, M 4 : ±1.64 percent, M 5 : ±1.58 
percent, M 6 : ±1.97 percent.) 

Fig. 4 Variation of the frictional resistances of the riblet pipes versus 
the Reynolds number 

U= £>/<VZ>2/4) 
The test section is between P6 and Pl l , as shown in Fig. 1, 
and A was determined from the values of these pressure taps 
in all experiments. 

The uncertainty of X is calculated according to ANSI/ASME 
(1986). The main sources of the bias error are the errors in D 
and the static pressures. For the latter, only the error caused 
by the shape of the pressure hole is considered. The other 
sources are very small compared with these and therefore are 
not discussed here. The error in D was considered as the major 
bias error as it was a constant during all experiments and was 
±0.24 percent from the result in the last section. The bias 
error limit of X based on D therefore becomes ±1.2 percent 
from the relation \<xD5. The other source, the errors caused 
by the shape of the pressure hole, were neglected herein for 
the following reason. As the static pressures are measured on 
the same pressure holes, the errors involved in the measuring 
values would be the same at all cases and would cancel out 
each other when the pressure gradient is calculated. Accord
ingly, the source of the bias error limit of X was only the error 

Nomenclature 

A = the pressure gradient 
D = the diameter of pipe Q = 
h = the height of groove (shown in U = 

Table 1) X = 
S = the spacing of groove (shown Re = 

in Table 1) 

the flow rate 
the mean velocity of pipe 
the frictional resistance 
Reynolds number based on the 
pipe diameter, DU/p 

Superscript 
+ = law of the wall variable 

Subscript 
RIB = of the riblet pipe 

0 = of the smooth pipe 
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Fig. 5(b) M 1 : h/S = 0.474, M 2 : h/S = 0.96, M 4 : h/S = 0.48, M 5 : 
h/S = 0.4 (Uncertainty for 95 percent coverage. M 1 : ±1.58 percent, M 
2: ±1.58 percent, M 3: ±1.47 percent, M 4: ±1.73 percent, M 5: ±1.67 
percent, M 6 : ±2.04 percent.) 

Fig. 5 Variation of the drag reduction versus the spacing of the groove 

Fig. 6 Drag reduction region of h+ and S + . 
:the boundary of drag reduction in the pipe flows 

:the boundary of drag reduction in the flat plate boundary layers 
(Walsh, 1983) 
:the positions that give maximum drag reduction on each riblet 
pipe 

o :the position of the maximum drag reduction in the present 
experiments 

s :the position of the maximum drag reduction in the flat plate 
boundary layers 

A :the position of the maximum position of the (Liu et al., 1989) 

on D. Next, the precision error limit for X was calculated based 
on a statistical analysis of repeated independent measurements 
and was determined to be a maximum of 1.6 percent. Finally, 
from both the bias error limit and the precision error limit, 
the uncertainty of X was estimated as 2.0 percent for 95 percent 
coverage. 

straight line with the same slope as that of the smooth pipe 
until P6. However, the pressure at PI 1 just after the test section 
is clearly smaller than that of the smooth pipe; that is to say, 
the pressure loss becomes smaller on the riblet pipe than on 
the smooth pipe. 

Figure 3 shows the variation of the frictional resistance of 
MODEL 4 versus the Reynolds number. X of the smooth pipe 
is on the solid line, which is the Blasius formula. X of MODEL 
4 is below that line up to Re = 2.8 x 104, but after that the 
riblet acts as roughness and the drag of MODEL 4 increases 
more than that of the smooth pipe. The two broken lines in 
this figure present the 95 percent coverage obtained in the last 
section. From this figure, the drag reduction of MODEL 4 is 
found to be significant even with consideration of the uncer
tainty. 

The frictional resistances of the riblet pipes are compared 
in Figs. 4. Figure 4 (a) shows the results of the riblet pipes 
with h/S<0.21, which are slightly below the Blasius formula 
around Re = 104, and after Re = 2 x 104 they show drag 
increase. These models indicate similar behavior, although their 
sizes are rather different. Figure 4 (b) shows the results of the 
models with h/S>0.4. These models indicate significant drag 
reductions. As the Reynolds number becomes smaller, the ef
fects of the riblet are relaxing because the height of the riblet 
becomes small in comparison with the sublayer thickness, and 
the frictional resistance becomes close to the Blasius. All models 
exhibit such behavior, but some of them seem still to work in 
those smaller Reynolds numbers. On the models with the sim
ilar value of h/S ( = 0.483 and 0.474), MODEL 4 with smaller 
h{h = 0.55 mm) exhibited drag reduction over a wider Reynolds 
number range than MODEL 1 (h = 0.86 mm). Therefore, the 
value of h seems to be important as far as the range of Reynolds 
number over which the riblet works. Figure 5 indicates the 
relationship between drag reduction and spacing of the riblet. 
Figure 5 (a), for h/S<0.21, shows that MODEL 3 and MODEL 
6 reduce the frictional drag about 3 and about 2 percent re
spectively. All models with h/S>0A shown in Fig. 5 (b) in
dicate drag reductions of 5 to 8 percent, with maximum drag 
reductions occurring at S+ = 15 - 25, which is in agreement 
with flat plate results. This figure also shows that the other 
models except MODEL 2 reduce drag successfully up to about 
S+ = 35; The reason that MODEL 2 does not reduce drag 
above S+ = 20 could be related to the value of h/S, because 
the riblet pipe tested by Liu et al. (1986) exhibited similar 
behavior and the h/S of both cases is about 1.0. These figures 
suggest that h/S is one of the important parameters and the 
riblet with h/S = 0.4 - 0.5 is optimum for drag reduction. 

Figure 6 shows the drag reduction region of h + and S+. This 
figure includes the boundary between drag reduction and drag 
increase in the present experiments, for the results of Liu et 
al. (1986) and the corresponding boundary for the flat plate 
case (Walsh, 1983), which is shown by the dotted line. As 
Walsh (1990) indicated, the S+ range for drag reduction ex
tends up to about 35 when h/S<Q.S. The broken line indicates 
the positions that give the maximum drag reduction in each 
model of the present experiments, and the solid circle presents 
the position of the maximum drag reduction in the flat plate 
boundary layers while the triangle indicates the position of the 
maximum drag reduction obtained by Liu et al. (1989). The 
maximum drag reduction obtained in both flows is almost the 
same (8 percent). However, the value of S+ that provides the 
maximum drag reduction seems to be different in pipe and 
boundary layer; S+ «12 for the flat plate boundary layers and 
S+ = 22 for the pipe flows. Some of this difference may be due 
to changes in riblet shape details such as peak sharpness. 

4 Experimental Results 
Figure 2 is a typical example of the measured pressure dis

tributions. The static pressures of the riblet pipe are on a 

Discussion and Conclusions 

Six riblet pipes were tested in fully developed turbulent flows. 
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MODEL 4 with h = 0.55 mm and h/S = 0.48 indicated the 
maximum drag reduction of 8 percent and worked over the 
widest range of Reynolds number. The present results also 
showed that the value of h/S is important for an overall drag 
performance with an optimum value of 0.4 - 0.5. 

It was found from the present results that the riblet shape 
desirable for drag reduction in the pipe flows can be roughly 
estimated from the results in flat plate boundary layers, but 
the optimum riblet shape for maximum drag reduction in the 
former is different according to the present results. The height 
and the spacing of the groove which are desirable for drag 
reduction in both pipe and flat plate are S+ = 15 - 25 and 
h+ = 7 - 15, respectively. As the optimal height of the riblets 
is considered to be directly connected with the sublayer thick
ness, it is expected to have a similar value in both flat plate 
boundary layers and pipe flows. On the other hand, the mean
ing of S+ is still not as clear as h +. Of possible interest is that 
both the S+ of the zero drag reduction point and the structural 
scale of the streaks in the near wall region are similar in both 
the pipe flows (Bakewell and Lumely, 1967) and the flat plate 
boundary layer. This suggests that the proper size of the riblet 

spacing has some relation to the structural scale of the wall 
streaks. 
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Effect of Suction on the Stability 
of Supersonic Boundary Layers. 
Part I—Second-Mode Waves 
The effect of suction on the second {Mack) mode of instability in supersonic and 
hypersonic two-dimensional boundary layers is investigated. The results show that 
suction has a stabilizing effect on these waves; it reduces the peak amplification and 
shifts it toward a higher frequency. In the presence of suction, the most amplified 
Mack mode remains two-dimensional. The effectiveness of suction in stabilizing 
Mack waves decreases as the Mach number increases. Variations of the growth rates 
of the most amplified Mack mode and the corresponding frequencies and wave 
numbers with mass flux are found to be almost linear. The frequencies and wave 
numbers corresponding to the most amplified Mack mode increase by increasing 
the suction level. 

Introduction 
The design of advanced aerodynamic vehicles, such as the 

high-speed civil transport HSCT aircraft and the hypersonic 
National Aerospace Plane (NASP), requires knowledge of the 
location and streamwise extent of laminar-turbulent transition 
in boundary-layer flows. In most cases, only a knowledge of 
the transition location is required to "switch" from the laminar 
to the turbulent options of the computer codes. In other cases, 
such as turbine blades, transition can extend over major parts 
of the chord. Advanced vehicles to operate at hypersonic speed 
and high altitudes will likely experience transitional flow. How
ever, the flow properties in the transition region can be ob
tained neither from laminar nor turbulent flow models, yet 
influence the performance (Herbert, 1991). Bogdanoff (1987) 
ranked the transition issue as a first-order problem in hyper
sonic vehicle design. 

The compressible stability theory of laminar boundary layers 
differs in many ways from the incompressible theory (Mack, 
1969, 1984; Nayfeh, 1988). The most important feature of the 
stability of supersonic laminar boundary layers is that there 
can be more than one growing mode of instability. Using 
extensive numerical calculations, Mack found that there are 
multiple values of wave numbers for a single disturbance phase 
velocity cr whenever there is a region in which the mean flow 
relative to the disturbance phase velocity is supersonic; that is 
M? > 1, where, Mr = (U-cr)/a, [/is the streamwise velocity, 
and a is the local speed of sound. The first mode of instability 
is similar to the Tollmien-Schlichting instability mode of in
compressible flows, while the second and higher unstable modes 
are unique to compressible flows. Mack called these modes 
higher modes and we will call them Mack modes. For the 
in viscid case, Mack found that the lowest Mach number at 
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which the higher modes exist in the boundary layer on an 
insulated flat plate is 2.2. The lowest of these modes is the 
second mode and it is the most amplified of the higher modes. 
The numerical results of Mack show that two-dimensional 
second and higher-mode (Mack) waves are more unstable than 
their corresponding three-dimensional waves. The maximum 
growth rate of second-mode waves drops sharply as the wave 
angle increases from zero. For the viscous case, the lowest 
Mach number at which Mack was able to calculate two-di
mensional second-mode waves is M„ = 3.0, at which the 
minimum critical Reynolds number is 13,900. Moreover, the 
inviscid instability increases rapidly with increasing Mach num
ber and hence one would expect the minimum critical Reynolds 
number to decrease rapidly to lower values as the Mach number 
increases. In fact, Mack found that the minimum critical Reyn
olds number drops to 235 as the Mach number increases to 
4.5. Moreover, at high Mach numbers, Mack waves have much 
higher growth rates than oblique first-mode waves. 

The effect of heat transfer on the stability of compressible 
boundary layers has been studied by many researchers. Using 
temporal inviscid and viscous theories, Mack (1969,1975) came 
up with most of what we know about the effect of heat transfer 
on the stability of compressible boundary layers. Mack found 
that while cooling stabilizes first-mode waves it destabilizes 
second-mode waves. Lysenko and Maslov (1984) confirmed 
experimentally and by integrating the stability equations in the 
Dunn-Lin approximation that surface cooling destabilizes sec
ond-mode (high frequency) disturbances: the amplification 
rates increase and the unstable frequency range expands and 
is shifted to the region of larger frequencies. Lysenko and 
Maslov found that the experimental results are in qualitative 
agreement with the predictions of the theory of hydrodynamic 
stability. 

Malik (1989) found that favorable pressure gradients sta
bilize both first and second-modes of instability. Zurigat et al. 
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(1990) studied the effect of favorable and adverse pressure 
gradients on the stability of compressible boundary layers. In 
addition to confirming the findings of Malik (1989), they found 
that the effectiveness of favorable pressure gradients on natural 
laminar flow control decreases at hypersonic Mach numbers. 
The stabilizing effect of favorable pressure gradients on three-
dimensional first-mode waves is much larger than on two-
dimensional first-mode waves. 

Malik (1989) studied the effect of self-similar suction dis
tributions on second-mode waves. He found that suction shifts 
the band of unstable frequencies to higher values and reduces 
the peak amplification. Mack (1989) showed that suction is 
also stabilizing according to the inviscid theory, although the 
effect is not as strong as in Malik's example. We note that 
Malik's results are for a single Reynolds number (R = 1500) 
and a single Mach number (M^ = 4.5). In this paper and its 
companion Part II, we present a detailed study of the effect 
of self-similar as well as uniform-suction distributions on the 
stability of supersonic boundary layers. Since, as we pointed 
out earlier, the most amplified second-mode waves are two 
dimensional, whereas the most amplified first-mode waves in 
supersonic flows are three dimensional, we consider the simpler 
problem of second-mode waves in this paper and we consider 
first-mode waves in Part II (Masad et al., 1991). 

The Mean Flow 

We consider a two-dimensional compressible flow of an ideal 
calorically perfect gas over an adiabatic flat plate. The basic 
flowfield is goverened by the nondimensional two-dimensional 
boundary-layer equations: 

x-momentum equation 

du du d 
pu-— + pv— = —-

dx dy dy 
du 

'dy 

continuity equation 

3(p") + 3(py) 
dx dy 

= 0 

energy equation 

dT dT 1 d 
pu-r- + pv— = — — 

dx dy Pr dy 

In these equations, 

^ ) + ( 7 - l ) M i M 

(1) 

(2) 

(3) 

x = —,y = ^R~t^, ii-
U* 

V 

' T T * 

/4 
(4) 

Re 
U*I*n* II* C* 

* ' — * > 
c* 

and 7 = — 

where the subscript o° indicates free-stream values, L* is a 
reference length, and C£ and C* are the gas specific heat 
coefficients at constant pressure and volume, respectively. For 
a perfect gas, the non-dimensional equation of state takes the 
form 

pT= 1 (5) 

Away from the wall, the boundary conditions are 

M—1 and r—1 as^—oo 

Moreover, the temperature gradient at the wall should vanish 
for adiabatic wall conditions; that is, 

= 0 (6a) 

Here, we consider the case of continuous wall suction. As-

dT 
— = 0at .y = 
dy 

suming that the suction velocity is directed normal to the plate, 
we have 

u = 0 and v = vw at y = 0 (6b) 

where v„ can vary with x in general. However, there are two 
restrictions on the suction velocity. First, vw should not be too 
large so as to invalidate the boundary-layer assumptions. Sec
ond, v„ should not vary abruptly, as in the case of suction 
strips. In the latter case, the conventional boundary-layer equa
tions cannot predict the upstream influence of the abrupt 
changes. Instead one should use a triple-deck formulation or 
the interactive boundary-layer equations or the Navier-Stokes 
equations. 

It is convenient to reformulate the problem by using the 
Levy-Lees variables 

= x and t\(x, y) = —j== \ pdy (7) 

and transforming Eqs. (l)-(6) into 

3 / 6F\ 

2£Fi+Vrl+F=0 

d ( 6 dQ\ 

(8) 

(9) 

2SFQt + VQT, - ^ I fr ^ ] - (7 " mlOFl = 0 (10) 

where 

F=u, Q=T, 9 = pn 

K=V2£ [s/Re pv + 7ix ^2% F] 

The boundary conditions become 
Z7—1 and Q—-1 as r/-»oo 

(Ha) 

(lib) 

(12fl) 

F= 0, — = 0, and V^l^Re p(0)vw at 17 = 0 (12Z?) 
07/ 

Equations (7)-(12) represent the nonsimilar boundary-layer 
equations. Under certain conditions, these equations admit 
self-similar solutions. These conditions include flows over an 
adiabatic flat plate with no suction or blowing. In the case of 
uniform suction distributions, Vw varies along the plate and 
hence self-similar solutions do not exist. However, when Vw 

is constant, and hence the physical suction velocity v„ is pro
portional to £~1/2, Eqs. (7)-(12) admit self-similar solutions 
for flows over adiabatic flat plates. In the latter case, F5 = 0 
and Qi = 0. Letting V = - fin) and solving Eq. (9), we have 
F=f. Then, using Eq. (5), we rewrite Eqs. (8) and (10) as 

(13) ^ f " ) ' + / / " = 0 

\7Pr 
l-^T' V+./T'+(7-l)M^(/-") z = 0 (14) j2 £. (f»\2 

T 

where the prime denotes the derivative with respect to 17. The 
boundary conditions (12) become 

/ ' - l and T - l as i j -00 (15) 

/ ' = 0 , T ' = 0 , a n d / = V 2 Kwatij = 0 (16) 

where 

V„ = -
710) vw = constant (17) 

Thus, the physical wall velocity must be proportional to T(0)/ 
V?- In the self-similar calculations, we specify V„ instead of 
vw. We note from Eqs. (17) and (5) that V„ is proportional to 
the mass-flow rate and we will refer to it as the mass flux. 

Equations (7)-(12) are solved using central differences in the 
transverse direction and three-point backward differencing in 
the streamwise direction, whereas Eqs. (13)—(17) are solved 
using the finite-difference code BVPFD (Pereyra, 1976). 
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Stability Analysis 

To study the stability of the calculated two-dimensional mean 
flow, we superimpose on it a small disturbance and express 
the total-flow quantities in the form 

q(x,y, z, t) = qm(y)+q(x,y, z, t) (18) 
where q stands for u, v, w, p, p, p, and T; the hat stands for 
the total-flow quantities; and the subscript m stands for the 
mean-flow quantities. Substituting Eq. (18) into the compress
ible Navier-Stokes equations, recalling that the mean flow sat
isfies the Navier-Stokes equations, and linearizing with respect 
to q, we obtain the disturbance equations 

du 

P=T —= (Tm) = T\i.'m (Tm) (27) 

Pm 

dp 
1" Pm 1T+U, 

dt dX 
du du du„, 
— + «„,-—+ y —— 
dt dx dy 

dv dw 
+ m— + m — 

dy dz 

dp 9 x dw n 
— + r-(pmv) + pm-r- = 0 
dx dy dz 

(19) 

dp }_ 

dx + R dx 

dyl 

du 
dx 
du„ 

Moreover, the linearized equation of state takes the form 
p/p,„=T/Tm + p/pm (28) 

Because the mean flow is assumed to be quasiparallel, we 
seek a solution in the form of three-dimensional traveling waves 
as 

[«, v,p, T, w] = [f,(y), f30), U(y), GOO, fcOOl 
exp [i(\adx + pz-o>t)] (29) 

where a and /3 are the stream wise and span wise wave numbers, 
respectively, and co is the frequency. Substituting Eqs. (28) and 
(29) into Eqs. (19)-(24), we obtain 

Dh + /of, - ~ ft + i(<xum- «) (7M
2„f4- £ ) + i0f7 = 0 

du din 
dy dx) dy 

+ fr, 
d_ 

dz 

dw du 
dx dz 

(20) 

dv dv 
Jt + UmTx 

+ n 
dum 

dy 

dp 

dy 

d 

i (d ' 
+ R [dx 

( du 

( du dv 

Ty+Tx, 

dv dw 
+ r — + m 

dy 
dz 

dw dw 

Yt^Yx 
dp 1_ 

' dz + R 

d (dv dw 
+ >*m~dz \dz + ~dy~ 

d (dw du 

(21) 

*mdx\dx + dz)+dy 

(30) 
T 

i(aum-o1)t;i + ^Dum + iaTmU-Y f - Mm(ra2 + (32)f, 

- aPiim(m +l)h + i(m+ l)<W?f3 + ix;j)TmD^ + iaix^DT^ 

+ txmD1h +D{^JDum)^ + ^DumD^} =0 (31) 
T 

i{aum-u)^+TmD^—-^ {iim+VaumDh + imaiimDTnt! 

- (a2 + /32)̂ mf3 + rn^DT„P& + im^'J)Tm^ + iay,'mDumK<l 

+ rii„fi2h + i(m + 1)/Wf7) = 0 (32) 

i(aum - w)f7 + ®TmU ~~f { ~ (m + l)a^mf, 

+ iPii^DT„h + M(m+ l)/3Df3 - pm (a2 + rp2)^ 

+|*^D7'mD^+n„ tfh i = o (33) 

dv dw 
^^Ty 

dT dT dTm 

dt dx dy 

+ Pm 
dz 

du dv dw 
m—+m — + r — 

dx dy dz 

i(aum-w)^i + ^DTm-i(y-\)TmMi{(xUm-<J>)U 

(22) 
( 7 - D M 2 „ ^ 2»mDum (Dh + /af3) + v.'m (Dum)% 

= ( 7 - l ) M 2 dp dp 1 
dt dx R 

T 
1 m 

RPr 
•n^cf+nh+Dipjjh) 

i 
RPr 

d2T d dT dT„ 

d^dy^Ty*^ 
dlT 

+ /*» ^2 

(du dv\ dum (du„ 

* = 2*" (d~y + Tx * T + " U 

(23) 

(24) 

where 

r = 2 + - and m = -
H ii 

The local Reynolds number R in Eqs. (19)-(24) is based on a 
reference length 5r* = ylvtxf/Ut,, which is the order of the 
boundary-layer thickness, where x* is the distance from the 
leading edge to the location where the stability calculations are 
performed. Velocities are normalized with respect to the free-
stream velocity £/£ and lengths are normalized with respect to 
5*. Hence, 

Uld* U^x* 
- = VRe, /xRe 

The boundary conditions at the wall are 
u=v=w=0 and T=0aiy = 0 

Away from the wall, 

u, v, w, T, p are bounded as j—oo 

+ D(,x,^>rmr5) =0 (34) 

ri = r3=r5=r7=oat^=o " ps) 
f„ are bounded as y— oo (36) 

where the prime denotes the derivative with respect to the 
argument and D = d/dy. 

In this work, we consider the case of spatial stability so that 
co is real. Because the mean flow is two-dimensional, /3 is real 
and a complex so that 

a = ar+ia, (37) 

Moreover, we compute to from the nondimensional frequency 
F a s 

co = RF (38a) 

and compute the wave angle \p as 

iH tan - 'OS/a , ) (38*) 
Letting R —• oo in Eqs. (30)-(34) yields the inviscid stability 

problem. The resulting equations can be combined into either 
(Mack, 1969; Nayfeh, 1988) 

I?U ~ D(\nDM2)DU - ^ (1 - M2)f4 = 0 (39) 

(25) 

(26) 
D'x + D In 

M2 

1-M 2 Z > X - k 2 ( l - M 2 ) x = 0 (40) 

We assume that /z is a function of temperature only; hence where 
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x = ^ - , M r = i a U : - ^ M - , k ^ ^ Y 2 (4i) 
aUm-w ky/Tm 

Thus, Mr can be interpreted as the local Mach number of the 
mean flow in the direction of the vector k = ai + /Sj relative 
to the phase velocity w/k. In general, Mr is complex and it is 
only real for neutral disturbances. Outside the boundary layer, 
Um = 1 and Tm = 1 and hence 

and Eqs. (39) and (40) reduce to 

rfU-k2^ -M})f4 = 0 (42) 

and 

D2
X-k2(l-M})x = 0 (43) 

Therefore, neutral disturbances decay outside the boundary 
layer if and only if M/ < 1; these disturbances are termed 
subsonic waves. When M} > 1, neutral disturbances do not 
vanish in the freestream and they represent sound waves or 
Mach waves of the relative flow; they are termed supersonic 
waves. When M/ = 1, the disturbances are termed sonic waves. 
These classifications are due to Lees and Lin (1946). Because 
subsonic waves are the most unstable disturbances (Mack, 
1969), we consider in this paper only subsonic waves and hence 
replace Eq. (36) with 

r „ - 0 a s ^ - o o (44) 

The eigenvalue problem given by Eqs. (30)-(35) and (44) 
consists of a system of homogeneous differential equations 
subject to homogeneous boundary conditions. The solution to 
this eigenvalue problem is obtained numerically using a com
bination of an adaptive finite-difference scheme (Pereyra, 1976) 
and a Newton-Raphson iteration procedure. Our code was 
validated for the case of impermeable flat plate by comparing 
its results with those obtained using the fundamental matrix 
method and the computer code SUPPORT (Asfar et al., 1990). 

The advantages of using the adaptive finite-difference scheme 
is that it is easy to program, highly accurate, and can solve a 
nonlinear problem. One of its disadvantages is the large amount 
of memory required if too many grid points are used, which 
will be the case if a high accuracy is required. Other disad
vantages are that the code might not converge even for linear 
problems and that it is not recommended for a number of 
equations exceeding 20. 

In all the computations done in Parts I and II of this paper, 
801 points were used in the normal direction. The value of y 
where the free-stream boundary conditions were applied was 
increased with increasing M<„. At M„ = 8.0, it was set equal 
to 40.0. The tolerance specified for all the computations is 
10~6, which means that the computations stop when 

lTl/max(lf l)<10"6 

where T is the estimated error for any f at any grid point. 

Results 
The quasiparallel assumption for the flow under consider

ation is justified because the wavelengths of the most amplified 
disturbances are very small compared to the development length 
X* of the boundary layer. For second-mode (Mack) waves of 

instability at i? = VRe^ = 1500, where Re*= Ulx*/vt, the 
results presented in this paper for the most amplified waves 
show that a*8*> 0.0945 for all Mach numbers between 3.8 
and 8, where a* is the most amplified streamwise wave number 

•and 5; = \fvlxf7ul. Thus, afx* > 0.0945 VRe^. 
The instability of compressible boundary layers is both vis

cous and inviscid in nature. The inviscid stability theory of 
compressible boundary layers revealed two important param

eters. Equations (39) and (40) show explicitly one of these 
parameters, namely, M„ the local Mach number of the mean 
flow in the direction of the wave number vector relative to the 
phase velocity oi/k. The second parameter is the so-called gen
eralized inflection point, which corresponds to ys where 

D(PmDU„,) = 0 (45) 

Lees and Lin (1946) demonstrated that a sufficient condition 
for the existence o.f amplified inviscid disturbances is the pres
ence of a generalized inflection point at some transverse po
sition ys > y0 where y0 is the transverse location where U,„ = 
1 - M^1. In contrast with incompressible flow over an in
sulated flat plate which does not have inflection points and 
hence is stable to inviscid disturbances, compressible flow over 
an insulated plate has generalized inflection points and hence 
is unstable to inviscid disturbances. 

At low supersonic Mach numbers, the instability is of the 
viscous type as in the incompressible case except that the most 
amplified waves are oblique rather than two-dimensional. As 
the Mach number increases, the generalized inflection point 
moves farther away from the wall, as in the case of incom
pressible boundary layers with adverse pressure gradients, ex
cept that compressibility has a stabilizing effect. Using extensive 
numerical calculations, Mack (1969) found that the destabil
izing influence of viscosity decreases as the Mach number in
creases and that above a Mach number of about 4, the influence 
of viscosity is only stabilizing. 

Using extensive numerical calculations, Mack (1979) estab
lished the existence of an infinite sequence of discrete wave 
numbers corresponding to an infinite sequence of discrete 
modes when M, > 1 somewhere in the boundary layer. The 
first mode of instability is similar to the Tollmien-Schlichting 
instability mode of incompressible flows, while the second and 
higher modes are unique to compressible flows. In contrast 
with the first inviscid mode whose existence depends on the 
presence of a generalized inflection point, the higher inviscid 
modes exist whenever M, > 1, irrespective of the presence of 
a generalized inflection point. The lowest Mach number at 
which the higher modes exist in the boundary layer on a flat 
plate is 2.2. It turns out that this is also the lowest Mach number 
at which subsonic higher mode disturbances exist. The lowest 
of the subsonic modes is called the second mode and it is the 
most amplified of the higher modes. The lowest Mach number 
at which Mack was able to calculate viscous two-dimensional 
second-mode waves is Mo, = 3.0 at which the minimum critical 
Reynolds number is 13,900. As pointed out earlier, the inviscid 
instability increases rapidly with increasing Mach number and 
hence one would expect the minimum critical Reynolds number 
to decrease rapidly to lower values as the Mach number in
creases. In fact, Mack found that the minimum critical number 
drops to 235 as M„ increases to 4.5. Moreover, at high Mach 
numbers second-mode waves have much higher growth rates 
than oblique first-mode waves. 

As suction is applied to the plate, the original generalized 
inflection point moves toward the wall and a second generalized 
inflection point appears for Um<\~M^'; the latter is not 
associated with any inviscid instabilities. As the suction level 
increases, the two generalized inflection points move toward 
each other and then disappear, resulting in the disappearance 
of the inviscid instability. 

In this paper, we investigate the effect of suction on second-
mode waves, whereas in Part II, we investigate the effect of 
suction on first-mode waves. As pointed out earlier, at Mach 
numbers above 3.0, a second mode of instability emerges. As 
the Mach number increases, this mode becomes more unstable 
than the first mode. Malik (1989) showed that the maximum 
growth rate - a,- of second-mode waves at M„ = 4.5 and R 
= 1500 decreases with suction and the frequency of the most 
amplified wave is shifted considerably toward higher values. 
Since our formulation and results are for a constant Prandtl 
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number, whereas those of Malik are for a variable Prandtl 
number, it is not possible to compare our results with his. 
However, Fig. 1 shows a set of results similar to those of Malik 
for the two Mach numbers 4.5 and 6.5 at R = 1500. The 
considered waves are two-dimensional. We note that as the 
Mach number increases, the band of unstable frequencies shifts 

considerably toward lower frequencies. Moreover, at both 
Mach numbers, suction reduces the peak amplification and 
shifts it toward a higher frequency. However, suction is much 
less effective in stabilizing second-mode waves at M„ = 6.5 
than at M«, = 4.5. 

Figure 2 shows variation of the maximum growth rates with 
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mass flux for the three Mach numbers M„ = 5, 6.5, and 8 at 
R = 1550. For all three Mach numbers, the maximum growth 
rates decrease monotonically with mass flux. In fact the max
imum growth rate decreases approximately linearly with mass 
flux. Figure 2 also shows that, although in the presence of no 
suction the maximum growth rates of second-mode waves at 
high Mach numbers are less than those at lower Mach numbers, 
it takes more suction to stabilize them. This is true at any 
suction level, as we can tell by comparing the slopes of the 
lines. This indicates clearly that the effectiveness of suction in 
stabilizing second-mode (Mack) waves decreases drastically as 
the Mach number increases. The corresponding frequencies 
increase approximately linearly with mass flux, as shown in 
Fig. 3. Moreover, the corresponding wave numbers also in
crease approximately linearly with mass flux, as shown in Fig. 
4. We note here that in computing the results shown in Fig. 
2, we maximized the growth rate over both frequencies and 
wave angles with the steps in frequency F and spanwise wave 
number B being 0.01 x 10"6 and 0.0001, respectively. The 
results show that the wave angle remained zero, which means 
that in the presence of suction, the most unstable second-mode 
(Mack) waves remain two dimensional. 

Figure 5 shows variation of the maximum growth rate with 
Mo, for different suction levels. The critical Mach number at 
which unstable second-mode waves exist increases with suction. 
Without suction, the critical Mach number is M„ = 3.8, 
whereas with Vw = - 0.3, the critical Mach number increases 
to Mo, = 5.3. In addition, suction is very effective in decreasing 
the maximum growth rates of Mach waves at low Mach num
bers. Figure 6 shows that the frequencies corresponding to the 
maximum growth rates decrease with Mach number but in
crease as the suction level increases, in agreement with the 
results of Figs. 1 and 3. The wave numbers corresponding to 
the maximum growth rates decrease as the Mach number in
creases but increase as the mass flux increases, as shown in 
Fig. 7, in agreement with the results of Fig. 4. 

Figure 8 shows variation of the growth rate with frequency 
for different levels of uniform suction distribution at M,, = 
6.0. As in the case of self-similar suction distributions, uniform 
suction distributions reduce the peak amplifications and shift 
them toward higher frequencies. 

We mention here that at hypersonic Mach numbers, tran
sition is more likely to take place due to the second mode 
rather than the first mode. It seems that controlling disturb
ances at hypersonic Mach numbers is a very difficult task. 
There are three main known methods to control disturbances, 
namely, heat transfer, pressure gradient (or wall shaping), and 
suction. Mack (1969) showed that wall heating stabilizes the 

second mode. However, wall heating is very unlikely to be 
used to control the flow at hypersonic speeds because available 
materials can hardly sustain the surface temperatures even in 
the presence of no heating. Moreover, Masad et al. (1991) 
showed that the effect of heat transfer on the stability of 
compressible boundary layers deteriorates at hypersonic speeds. 
Zurigat et al. (1990) showed that the effectiveness of wall 
shaping on stabilizing the flow also decreases at high Mach 
numbers. In this work we showed that suction behaves simi
larly. Thus, all three main known methods of controlling 
boundary layers become ineffective at hypersonic speeds, and 
there might be a need to explore other methods to control the 
flow at high speeds. 

In summary, suction is more effective in stabilizing second-
mode (Mack) waves at low Mach numbers. The peak ampli
fications of Mack waves are always reduced by suction and 
shifted toward higher frequencies. In the presence of suction, 
the most amplified Mack waves remain two dimensional. The 
maximum growth rates ofsecond-mode (Mack) waves and their 
corresponding frequencies and wave numbers vary almost lin
early with mass flux. The frequencies and wave numbers cor
responding to the most amplified second-mode waves increase 
by increasing the mass flux. 
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Effect of Suction on the Stability 
of Supersonic Boundary Layers, 
Part II—First-Mode Waves 
The effect of suction on the first mode of instability of compressible two-dimensional 
boundary layers is investigated. Suction is found to be more effective in stabilizing 
the viscous instability, and hence it is more effective at low Mach numbers. Suction 
decreases the amplification rates at all frequencies and narrows down the band of 
unstable frequencies. Moreover, for a given frequency, suction decreases the am
plification rates at all streamwise locations. Variations of the growth rates of the 
most amplified first-mode waves with mass flux are found to be almost linear. 

Introduction 
The stability theory of compressible laminar boundary layers 

differs in many ways from that of incompressible boundary 
layers (Mack, 1969, 1984a; Nayfeh, 1988). Whereas the in
compressible flat-plate boundary layer has no inflection points 
and hence is stable to in viscid disturbances, the compressible 
flat-plate boundary layer has generalized inflection points and 
hence is unstable to inviscid disturbances. The generalized in
flection point is defined as the point where D(pmDUm)=Q. 
As the Mach number increases, the generalized inflection point 
moves away from the wall and the inviscid instability increases. 

The most important feature of the stability of supersonic 
laminar boundary layers is that there can be more than one 
growing mode of instability. Using extensive numerical cal
culations, Mack found that there are multiple values of wave-
numbers for a single disturbance phase velocity whenever there 
is a region of supersonic mean-flow velocity relative to the 
disturbance phase velocity; that is, M^> 1, where Mr = M~ c/ 
a, M is the local wavenumber, c is the phase speed, and a is 
the local speed of sound. The first mode is similar to the 
Tollmien-Schlichting instability mode of incompressible flows, 
while the second and higher modes are unique to supersonic 
flows. 

It is an interesting facet of compressible two-dimensional 
boundary layers that the most unstable first-mode wave need 
not be parallel to the free stream as the Mach number ap
proaches unity. In contrast with incompressible stability the
ory, three-dimensional first-mode waves at supersonic speeds 
are more unstable than their corresponding two-dimensional 
waves. 

Again, using extensive numerical calculations, Mack inves
tigated the influence of Mach number on the viscous instability 
of compressible flows past flat plates. He found that viscosity 
is stabilizing for both two-dimensional and three-dimensional 
first-mode waves when M ^ s ^ S ; that is, the maximum am-
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OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
November 5, 1990. 

plification rate (over all frequencies and waveangles at a con
stant Reynolds number) decreases with decreasing Reynolds 
number. At M„ = 1.6, Mack found that compressibility dras
tically reduces the viscous instability. As the Mach number 
increases beyond 1.6, the viscous instability continues to weaken 
although the effect of the increase in the inviscid instability 
continues to extend to lower and lower Reynolds numbers. 
When M„ reaches 3.8, the viscous instability disappears and 
viscosity acts only to damp out the inviscid instability. This 
result was disputed by Wassan et al. (1984) who did not find 
a transition from viscous to inviscid instability with increasing 
Mach number but found that the viscous instability persists to 
M„ = 6.0. Mack (1984b) reconfirmed his calculations for the 
case of temporal stability and obtained spatial stability results 
that agree with his earlier conclusions on the influence of 
viscosity on compressible stability. Recently, Reed and Bala-
kumar (1990) also reconfirmed the results of Mack. Our results 
are in full agreement with those of Mack and Reed and Ba-
lakumar. 

Malik (1989) investigated the influence of self-similar suction 
distributions on second-mode waves at Mo = 4.5 and R = 
VRe*=1500. He found that suction reduces the peak ampli
fication and shifts it to a higher frequency. Mack (1989) showed 
that suction is also stabilizing according to the inviscid theory, 
although the effect is not as strong as in Malik's example. In 
this paper, we present a detailed study of the effect of suction 
on first-mode waves in supersonic boundary layers. Second-
mode waves are treated in Part I (Al-Maaitah et al., 1991), 
which also contains the problem formulation. 

Results 
The quasiparallel assumption for the flow under consider

ation is justified because the wavelengths 2ir/a* of the most 
amplified first-mode instability waves are very small compared 
to the development length x* of the boundary layers. In fact, 
the results presented in this paper show that <x*,x*r>0.0239 
\Rsx for Mach numbers varying from zero to 7.0 and for 
Klv = 0.0, - 0 . 1 , and -0.2, where Re* is the Reynolds number 
based on x*r and Vw is the self-similar mass flux. 
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Fig. 3 Effect of suction on the variation of the growth rate with span-
wise wavenumber when fl= 1500, F = 20 x 10~6,Pr = 0.72, and 7„ = 150°K 

A great deal of the physics of the stability problem can be 
understood by studying the effect of suction on the mean-flow 
characteristics. Whereas the incompressible Blasius profile does 
not have an inflection point and hence it is stable to inviscid 
disturbances, an important characteristic of the compressible 
boundary layer on an adiabatic flat plate is the existence of a 
generalized inflection point inside the boundary layer and hence 

0.0000 -

4000 

Fig. 5 Effect of suction on the variation of the growth rate with stream-
wise location when F=20x10~ 6 , M„ = 4.0, 7"„ = 150°K, Pr = 0.72, and 
/3 = 0.06R/1000. The values of Vw proceeding downwards are: 0.0, - 0 . 1 , 
-0 .2 , -0 .3 , -0 .4 , and -0 .5 . 

the compressible boundary layer is unstable to inviscid dis
turbances. The inflection point is defined as the pointy where 
D{pmDUm)=Q. Lees and Lin (1946) established that a suffi
cient condition for the existence of amplified inviscid disturb
ances is the presence of a generalized inflection point atys>yo, 
where jo is the point where Um - 1 - MJ ' . As the Mach number 
increases, the generalized inflection point moves away from 
the wall and hence the inviscid instability increases. 

In the absence of suction, there is one generalized inflection 
point j s inside the compressible boundary layer. Becauseys>yo, 
this generalized inflection point is associated with an inviscid 
instability. Suction decreases^ and creates another generalized 
inflection pointy, near the wall. In Fig. 1 we show our results 
for variation of the locations of the inflection points with the 
level of the self-similar wall suction distribution when M„ = 2.0, 
4.0, and 6.0. Becauseysi <y0, the second generalized inflection 
point is not associated with an inviscid instability. As the suc
tion level increases, the two generalized inflection points move 
closer to each other until they meet and then disappear, as 
shown in Fig. 1. The minimum suction level needed to eliminate 
the generalized inflection points increases rapidly as the Mach 
number increases. Therefore, the suction level needed to sta
bilize the inviscid mechanism increases rapidly as the Mach 
number increases. The influence of T^ on the locations of the 
generalized inflection points is shown in Fig. 2. Our results in 
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Fig. 2 show clearly that the suction level needed to eliminate 
the generalized inflection points increases by decreasing T„. 

Mack (1969) found that oblique first-mode waves are more 
unstable than two-dimensional first-mode waves. In Fig. 3, we 
show the effect of suction on variation of the growth rate with 
spanwise wavenumber /3 for the Mach numbers 2.0, 4.0, and 
6.0. Clearly, suction has a stabilizing influence on two-di

mensional and three-dimensional waves and its effect decreases 
as the Mach number increases. Moreover, suction slightly 
changes the most amplified spanwise wavenumber. 

In Fig. 4, we show variation of the growth rate with fre
quency for the Mach numbers 2.0, 4.0, and 6.0. It is clear that, 
for all three Mach numbers, suction decreases the band of 
frequencies receiving amplification and reduces the growth 
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rates at all frequencies. However, it is also clear that the un
stable band of frequencies greatly increases by increasing Mach 
number. As we have seen in Fig. 3, Fig. 4 indicates that the 
effect of suction on stabilizing first-mode waves decreases as 
Mach number increases. Figure 4 shows that there is no con
sistent trend in the shift of the peak amplification as suction 
is applied, which means that the shift depends on Mach num
ber. 

For a given frequency and following a certain wave with a 
specific dimensional spanwise wavenumber as it propagates 
downstream, suction decreases the growth rates of first-mode 
waves at all stream wise locations, as shown in Fig. 5. Suction 
increases the critical Reynolds number and decreases the Reyn
olds number corresponding to the second neutral point. It is 
clear that the amplification factors (areas under the curves) 
decrease as the mass flux increases. 

Variation of the maximum growth rate (maximized over all 
waveangles and frequencies) with Mach number is shown in 
Fig. 6. In performing the maximizations over the frequencies 
and waveangles, we took the steps in the frequency F and 
spanwise wavenumber fi to be 0.001 x 10~6 and 0.00001, re
spectively. In the absence of suction, the maximum growth 

rate decreases monotonically with Mach number. Suction is 
more effective at low Mach numbers because it reduces the 
viscous instability, which is dominant at low Mach numbers. 
However, suction is not as effective in stabilizing the inviscid 
mechanism, which is dominant at higher Mach numbers, be
cause high levels of suction are needed to eliminate the gen
eralized inflection points at such Mach numbers. Figure 7 
shows the frequencies corresponding to the maximum growth 
rates of Fig. 6, whereas Figs. 8 and 9 show the corresponding 
waveangles and wavenumbers, respectively. 

Mack studied the effect of suction on the stability of com
pressible boundary layers on two transonic wings of infinite 
span. He considered stationary (zero-frequency) disturbances 
to represent cross-flow instability as well as disturbances with 
the wavenumber vector aligned with the local flow direction 
to represent traveling-wave instability. Mack found that, for 
both types of disturbances, the maximum amplification rate 
varies almost linearly with the suction magnitude up to at least 
the point where the amplification rate is halved. Our results 
show that, for our configuration, the growth rates decrease 
almost linearly with suction level as shown in Fig. 10, in which 
variation of the maximum growth rate is plotted against the 
suction level for the three Mach numbers Mo = 0.0, 2.0, and 
4.0 at R = 1500. Figure 11 shows the frequencies corresponding 
to Fig. 10, whereas Figs. 12 and 13 show the corresponding 
waveangles and wavenumbers. 

In summary, first-mode waves are always stabilized by suc
tion. Suction is found to be more effective in stabilizing the 
viscous stability, and hence it is more effective at low Mach 
numbers. Variation of the growth rate of the most amplified 
first-mode wave with mass flux is found to be almost linear. 
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Direct Determination of the Onset 
of Transition to Turbulence in 
Flow Passages 
Easily applied methods are proposed, based on tests with air and water, for direct 
determination of the onset of transition in flow passages using static and dynamic 
wall pressure data. With increasing Reynolds number from laminar flow, the char
acteristic feature of transition is the change from steady to oscillating pressure 
readings. It is established that the power spectral density (psd) representations 
exhibit a distinctive change in profile at transition. Further, it is shown that the 
root-mean-square (rms) values of the wall pressure fluctuations rise sharply at 
transition. The critical Reynolds numbers recorded via the change from steady to 
unsteady pressure readings are almost the same as those deduced from the psd and 
rms pressure data or from the familiar friction factor-Reynolds number plots. 

Introduction 
The process of transition from laminar to turbulent flow in 

pipes, which involves the presence of alternating patches of 
laminar and turbulent flow with time, was successfully traced 
by Reynolds (1883) more than a century ago. Since then, this 
important problem has attracted the attention of many re
searchers and will probably continue to interest investigators 
for many years to come. The presence of turbulent slugs/spots 
has been confirmed (Lindgren, 1957; Paterson and Abernathy, 
1972; Wygnanski and co-workers, 1973; 1975; to mention a 
few) and is now considered to be an integral part of the tran
sition process. However, the problem is that there is no simple 
and direct method for accurate determination of the onset of 
transition; notably for situations that involve heat transfer. 

To date, flow visualization is by far the most common method 
for obtaining data on the transition or critical Reynolds num
ber. Alternatively, a hot-wire probe can be used to detect the 
discontinuity in velocity signal between laminar flow and the 
turbulent slugs (Karnitz et al., 1974). The hot wire technique 
can also be used to determine the intermittency coefficient as 
a function of the flow Reynolds number, from which the values 
of the lower and upper critical Reynolds number can be de
termined (Kaupas et al., 1989). Even for isothermal channel 
flows, these experimental techniques are somewhat limited, 
not to mention the complication introduced by the presence 
of heat transfer. Also, these techniques do not afford direct 
determination of the corresponding pressure drop, and hence 
the critical friction factor, at transition. Indirectly, the critical 
Reynolds number at the onset of transition is usually deduced 
from the friction factor-Reynolds number plots, an approach 
that requires extensive experimentation as well as data reduc
tion. The advantage of the indirect approach is that it can give 
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accurate estimates of the critical Reynolds number and the 
critical friction factor. 

Besides the occurrence of turbulent slugs/spots, there are 
clear indications that the onset of transition is accompanied 
by significant unsteadiness in pressure drop readings (Reyn
olds, 1883; Paterson and Abernathy, 1972; Jones, 1976; and 
Fukano et al., 1989). In the experiments to determine the 
critical Reynolds number, Reynolds observed very steady dif
ferential pressure readings for low flowrates, with marked 
pressure oscillations at a particular flowrate for a given tube. 
These results, which were documented in sufficient detail, led 
Reynolds to conclude that "to each critical velocity, of course, 
there corresponds a value of the critical pressure." He also 
postulated that the general cause of the change from steady 
to eddying motion was the consequence of an instability in 
laminar flow. Paterson and Abernathy used the intermittency 
of the pressure transducer signal to study pipe flow transition 
for water and dilute solutions of polyethylene oxide. 

The results of Jones (1976) indicated that the scatter in the 
measured friction factors was significantly greater in turbulent 
than laminar flow, especially in the transition region. More 
recently, Fukano et al. (1989) presented time traces of the 
differential pressure signals for laminar, transitional and tur
bulent flow. Their profiles showed roughly the same general 
trend for laminar and turbulent flow, with significant fluc
tuations within the transition region. Specifically, the traces 
have periods with large and small amplitudes, which is indic
ative of the intermittent nature of the flow within the transition 
region. Although it would seem from this discussion that the 
onset of transition may be determined by simply monitoring 
the pressure drop readings with increasing flowrate to detect 
the change from steady to unsteady readings, it appears that 
no systematic investigation has been made to provide a con
sistent basis for the use of such a method. 

The work described in this paper grew out of preliminary 
single-phase pressure drop measurements that were performed 
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to qualify the two-phase flow experimental facility at Argonne 
National Laboratory. The rather unique features of transition 
that were observed during these measurements prompted ex
tension of the data processing to include computation of both 
the power spectra of the wall differential pressures and the 
associated rms values of the pressure fluctuations. Based on 
these results, direct experimental methods are proposed for 
determining the onset of transition of turbulent flow in flow 
passages. 

small Endevco transducers, which were used mostly for both 
air and water with the rectangular passage and for limited 
circular tube tests with air, the rms data are presented as pTms 

and Aprms; the latter was obtained by taking the difference of 
the two point measurements. The signal processing of the wall 
pressure fluctuations was carried out using a Hewlett-Packard 
Model 5451C FFT (Fast Fourier Transform) Analyzer, aver
aging 5.12-second "lengths" of time signal; the total sampling 
time was 51.2 seconds. 

Experimental Facility and Test Procedures 
It should be mentioned at the outset that the air experiments 

were performed on a circular tube and a rectangular channel, 
while the water data were obtained only with the latter. For 
the air experiments, compressor air was passed through one 
of three rotameters (depending on the desired flowrate), a 
flexible hose and a straight 7.75 mm I.D. stainless steel tube 
or a rectangular channel of width and height 3.18 and 19.05 
mm, respectively. For any particular rotameter, the air flowrate 
was varied by regulating the rotameter inlet pressure over the 
range of values between 101.3 kPa and 653.0 kPa. Air tem
perature at a rotameter inlet was measured by a resistance 
temperature detector. All air rotameters were calibrated using 
a dry gas test meter and appropriate corrections were applied 
to account for differences between calibration and actual test 
conditions. The estimated uncertainty in flowrate measurement 
was ± two percent. For water, the fluid was similarly metered 
by one of three calibrated rotameters prior to passing it through 
the rectangular channel. Additional details of the test facility 
are given in Wambsganss et al. (1991) and will not be repeated 
here. 

For the stainless steel tube, the pressure taps, spaced 0.69 
m apart, were located 0.305 m from one end of the tube and 
3.88 m from the other end. By reversing the flow direction it 
was possible to obtain pressure drop data for two entrance 
lengths (Le/De = 39.3 and 500). The pressure taps were made 
by welding a 3.2 mm I.D. housing to the outside surface of 
the tube and drilling a 0.25 mm hole through the tube wall. 
For the rectangular channel, the upstream and downstream 
pressure taps were located at Le/De =135 and 198. Two holes, 
3.2 mm in diameter, were drilled through the vertical side of 
the channel wall to afford almost flush mounting of the pie-
zoresistive transducers. 

For the air experiments, the pressure measurements were 
made using two types of transducers: a Statham unbonded 
strain gauge transducer (range: ± 1.03 kPa) and two Endevco 
piezoresistive transducers (range: 0-13.8 kPa). The latter fitted 
directly into the upstream and downstream pressure taps and 
provided pressure data relative to the ambient. For the Statham 
transducer which was used only with air at low pressures, and 
was the reference for the other calibrations, clear tubings (1.59 
mm internal diameter) were used to link the two transducer 
ports to the adaptors inserted into the pressure tap openings. 
It is noted that preliminary pressure drop measurements were 
also made using a Meriam Instrument Company (Model 
40HE35) inclined manometer. 

The rms values of the differential pressure fluctuations were 
obtained with the Statham transducer for the circular and 
rectangular ducts and, consistent with the details in the pre
ceding paragraph, these data are presented as Aprms. For the 

Results and Discussion 

Visual Determination of the Critical Reynolds Number. It 
is instructive to begin the presentation with an overview of the 
dominant features that were observed during the single phase 
pressure drop measurements, since these observations prompted 
the dynamic pressure analysis. It is noted that the trends that 
are given in the following discussion were in evidence with all 
pressure transducers and the inclined manometer mentioned 
in the preceding section. Also, for a given flowrate, the output 
of the pressure transducers was displayed simultaneously on 
the Hewlett-Packard 3466A and Fluke 8060A digital multi
meters. 

In laminar flow, the characteristic feature was one of very 
steady pressure drop readings. With increasing flowrate, there 
was always one flow setting at which very significant variations 
in pressure drop reading were observed for either duct ge
ometry, even when the rotameter setting was as steady as can 
be maintained. The most remarkable thing about this flow 
setting was that by lowering it by 0.5 mm on the rotameter 
scale, which amounted to a Reynolds number decrease on the 
order of 50, one was back again into the steady pressure drop 
regime. From the very extensive flow calibration data it was 
established that the flow setting, which marked the onset of 
unsteady differential pressure readings, corresponded rather 
closely to that for transition to turbulence, based of course on 
the location of the minimum in plots of friction factor versus 
Reynolds number. With increasing flowrate from the value for 
the initiation of unsteady pressure drop readings, the marked 
variations in these readings persisted and then diminished in 
magnitude when one was well into the turbulent regime, an 
indication that there may be a well defined transition region. 

Although the general trends outlined above were the same 
for the circular and rectangular cross-sections, there was one 
notable difference, that is, the magnitudes of the variations in 
pressure drop readings were more pronounced with the rec
tangular channel than with the circular tube. Interestingly, for 
either duct, the flowrate corresponding to this initiation point 
(hereafter referred to as the critical or transition Reynolds 
number) remained unchanged whether it was approached be
ginning from laminar or turbulent flow. In the latter case, this 
is the flow rate below which there exists steady pressure drop 
readings. 

At the onset of transition, the differences between the lowest 
and the highest pressure drop readings were quite significant. 
For example, the maximum peak-to-peak values recorded with 
the circular tube were 20.2 Pa for Le/De = 39.3, and 52.4 Pa 
for Le/De = 500. For each Reynolds number within the tran
sition region and inclusive of the Re range up to 5000, cal
culations of the average pressure drop and the attendant 

Nomenclature 

A — cross sectional flow area, m m 
De = equivalent (hydraulic) diame- prms 

ter, m 
/ = frequency (Hz) Aprms 

Le = entrance length, m 

mass flowrate, kg/s 
rms value of wall pressure 
relative to ambient, Pa 
rms value of wall differential 
pressure, Pa 

Re = Reynolds number, mDe/A\i. 
V = average flow velocity, m/s 
/x = fluid viscosity, Pa s 
p = fluid density, kg/m3 
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Fig. 1 Typical time traces of the pressure drop signal (with 1 volt = 
68.95 Pa, uncertainty in pressure drop = ± 1.0 Pa and in time = ± 1 
percent) 

standard deviation were made using twenty-five readings. In 
all cases, the values for the standard deviation were largest 
within the transition region. Also, the percentage variations 
about the average pressure drop were greatest at the Reynolds 
number that corresponded to the onset of transition. The ob
servations in the preceding paragraphs prompted calculation 
of both the power spectral density and the rms values of the 
wall differential pressure fluctuations. 

To shed further light on the above discussion of the visual 
observations, time traces of the differential pressure signals 
are given in Fig. 1 for the Le/De = 39.3 stainless steel tube 
location. For convenience and in order to consolidate this 
information into a single figure, the ordinate is in volts and 
the appropriate conversion is 1 volt = 68.95 Pa. Beginning 
with the lowest Reynolds number of 2464 in laminar flow, the 
pressure drop-time history are shown for eleven values of Reyn
olds number. These results require only several comments be
yond the elaborate discussion in the preceding paragraphs. The 
first is that the distinct change from steady to fluctuating 
profile is observed around Re = 2572. Also, the shape of the 
turbulent profiles (Re = 4813 and 6349) are markedly different 
from those in laminar flow or within the transition region. 
With regard to the onset of transition, attention is directed to 
the presence of a "hump" between 1.5 and 2 seconds for Re 
= 2572 and several "humps" for Re = 2626. 

In summary, the present observations on the change from 
steady to unsteady differential pressure readings, the connec
tion between this phenomenon and transition to turbulence 
and the fact that the transition region is the seat of marked 
oscillations in differential pressure are qualitatively in agree
ment with the findings of other investigators (Reynolds, 1883; 
Jones, 1976; Fukano et al., 1989). Although the connection 
between the onset of unsteady pressure drop readings and the 
occurrence of turbulent slugs/spots was not addressed in this 

study, it appears, at least based on the observations of Reynolds 
on eddy formation, that the two phenomena may be indicative 
of the same process. 

Dynamic Wall Pressure Data. We begin this presentation 
by considering the real time signals of the differential pressure 
fluctuations (the "d.c. contribution" has been removed), Fig. 
2, and the power spectral density (psd) of the wall differential 
pressures (Fig. 3) because, as with the wall differential pressure 
signals of Fig. 1,'the characteristics of these representations 
with increasing Reynolds number afford direct determination 
of the onset of transition. Figures 2 and 3 complement Fig. 1 
in that the test conditions were the same and the data were 
obtained using the Endevco transducers; but 
the conversion for Fig. 2 or 3 is 1 volt = 6.895 Pa. The 
corresponding nondimensional value (pr'ms = Aprms/pV2) of 
the rms differential pressure fluctuations is also given for each 
Reynolds number on Fig. 3. 

It is evident from the general characteristics of these rep
resentations that the transition region, inclusive of the Reyn
olds number at which the process begins, is a special case. For 
instance, the amplitudes of the differential pressure fluctua
tions of Fig. 2 are generally small in laminar flow. In the vicinity 
of the transition point, as well as within the transition region, 
oscillations of very high amplitude are observed to occur; but 
their amplitude decreases as one moves into turbulent flow. 
Similarly, Fig. 3 establishes that the low frequency contribu
tions (f < 18 Hz) are primarily responsible for the dramatic 
increase in the rms differential pressure fluctuations in the 
transition region; here, the reader's attention is called to the 
changes in scale factor on the "y axis." Frequency contri
butions in the range 18 to 70 Hz are most likely inherent to 
the test channel/measurement system. It is expected that they 
are present in the transition region but are not detectable on 
the spectral plots of Fig. 3 because of the two orders or mag
nitude increase in scale factor. For the moment, it is also worthy 
of note that the normalized value of the rms differential pres
sure fluctuations rises sharply at transition (Fig. 3). 

The most important conclusion that can be drawn from the 
results of Figs. 1-3 is that there are characteristic changes in 
amplitude and/or shape of the profiles. Thus, by fine tuning 
the fluid flowrate and simultaneously monitoring the differ
ential pressure signals, the wall differential pressure fluctua
tions, or the power spectral density profiles, this distinctive 
feature can be used to determine the onset of transition with 
a high degree of accuracy and consistency. The real advantage 
of these methods is one of simplicity; requiring little additional 
instrumentation beyond what is usually needed for pressure 
measurements. 

To carry the presentation a step further, the root-mean-
square (rms) values of the wall pressure fluctuations, together 
with the frequency range over which the data were averaged, 
are presented on Figs. 4-6 for air and on Fig. 7 for water. The 
upper plot of Fig. 4 shows the circular tube Aprms data for Le/ 
De = 39.3 and 500, while the nondimensional representations 
(scaled with p V1) of the same data are given in the lower plots. 
The results obtained on the rectangular passage are presented 
on Figs. 5-7. The dimensional and nondimensional data across 
the length over which the pressure drop was measured are given 
in Fig. 5 where, for the purpose of comparison, the Statham 
transducer data are also included, Fig. 5(c). By contrast, the 
rms pressure profiles at the upstream and downstream tap 
locations, with the ambient pressure as the reference, are shown 
in Fig. 6. For water, the upstream and downstream data as 
well as Aprms are given on Fig. 7. 

On each of Figs. 4 through 6, the points that are identified 
with arrows along with the letter ' V are those at which the 
change from steady to unsteady oscillatory pressure readings 
were observed visually from the transducer output. Since pre
liminary tests with water indicated a similar change from steady 
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to unsteady differential pressure readings, as well as the same 
general trend for the rms pressure fluctuations as with air, the 
visually observed transition Reynolds number was not recorded 
during tests for which the results are given on Fig. 7. 

It was determined, based on the location of the minimum 
in the friction factor versus Reynolds number curves, that the 
sudden change from steady to unsteady differential pressure 
readings is exhibited by a sharp rise in the rms value of the 

differential pressure fluctuations. It follows that the peak value 
of Aprms does not occur at the transition Reynolds number, 
but rather at a Reynolds number greater than that at transition. 
The friction factor data are given in the paper by Wambsganss 
et al. (1991). Another useful result of this study is that the 
same conclusion is reached with a single pressure tap as with 
differential data over a specified length (Figs. 6 and 7). 

From the time traces of the static and dynamic pressure 
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signals, the power spectral density plots and the attendant rms 
pressure profiles, it is correct to state that there exists a well 
defined transition region, the extent of which is, unlike that 
for either laminar or turbulent flow, confined to a very narrow 
Re range. Although the indication is that the onset of transition 
is almost abrupt in nature, it appears that fully turbulent flow 
occurs only after the p r m s or Aprms value has dropped from its 
maximum to its lowest value. On this basis, the results of this 
study indicate that the transition region extends to about 1.4 
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times the critical Reynolds number for both circular and rec
tangular ducts. 

Comparison of the transition Reynolds number determined 
from Figs. 1-3 with that deduced from Fig. 4 for the same Lel 
De shows that the latter value is higher by about 15 percent. 
This is a reflection of the effect of temperature that is not 
adequately accounted for by the Reynolds number similarity. 
The results on Figs. 1-3 were obtained during the winter for 
an air temperature of 16.6°C, while the air temperature for 
the data of Fig. 4 was 29.0°C. 

It was noted earlier, during the discussion of the visual 
observations, that the magnitudes of the variations in the dif
ferential pressure readings were more pronounced in the rec
tangular channel than the circular tube. This fact is established 
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from comparison between Figs. 4(a) and 5(c) which give 
results obtained with the same transducer (Statham) for the 
same (0-40 Hz) frequency range. In laminar flow, A/?rms (Fig. 
4(a)) is independent of Re for the circular tube. By contrast, 
Ams (Fig. 6(a)) or Aprms (Fig. 5(a)) increases with increasing 
Re for the rectangular channel with air or water (Fig. 7). Since 
there is hardly any effect of Le/De on Ap™l or on Aprras (Fig. 
4) in the laminar or turbulent flow range, it may then be noted 
that, although the peak Aprms is roughly about the same for 
both cross-sections, Aprms values in both laminar and turbulent 
flow are significantly higher with rectangular than with circular 
geometry. 

For a given duct cross-section and tranducer, p^s or 
Ap?m* is almost independent of the frequency range over which 
the data were averaged, Fig. 5 (a) . As can be determined from 
Fig. 3, this is a direct consequence of the dominance of the 
low frequency content of the psd profile at this Reynolds num
ber. In laminar or turbulent flow, values of prms or Aprras vary 
widely with frequency since, given the shape of the psd profiles 
of Fig. 3, a large frequency range allows for additional con
tributions to the rms values. Also, it is noted that the small 
diameter Endevco transducers give rms values that are much 
higher than those obtained with the Statham unbonded strain 
gauge transducer. This is due to the fact that since the local 
pressure is made up of both nearfield and farfield components, 
the latter with inherently long wavelengths are effectively nulled 
out in the subtraction process; also, the longer lines associated 
with the differential transducer tend to act as a 'filter' for high 
frequencies. 

It is evident from Figs. 4(b) and 5(b) that ApTms/pV2 de
creases monotonically with Re in laminar flow, with a mini
mum and maximum very close to the transition point and 
midway within the transition region, respectively, and then 
continues to decrease with increasing Re. For the circular tube, 
since Aprms is almost independent of Re in laminar flow, it 
follows that Aprms/pV2 a Rem, where m must have a value 
close to - 2.0. Using the Le/De = 39.3 data, a value of - 2.02 
was deduced by regression. It is noted that the_use of pU2- (Ur 

— (TI /P) 1 7 2 , friction velocity) instead of pV2 as the scaling 
factor for Aprms does not alter the general trend on Fig. 4(b) 
or 5(b). Specifically, Apvms/pU2 decreases steadily from 2.37 
at Re = 5870 to 0.9 at Re = 15710 for the circular tube. 

Conclusions and Recommendations 
In summary, to determine the onset of transition beginning 

from laminar flow, it is necessary to fine-tune the flow while 
observing the characteristic change from steady to unsteady 
wall pressure readings. Given the magnitudes of the static 
pressure variations, it should be possible to detect the phe
nomenon even with an inclined manometer similar to that used 
in this study, not to mention the use of a pressure transducer 
which affords monitoring of the digital display of the output. 
Alternatively, the graphical display of the wall pressure fluc
tuations and the power spectral density of the wall pressures 
can be viewed with increasing Reynolds number to detect the 
characteristic change in both the magnitude and shape, an 
indication of the sharp rise in the rms value of the pressure 
fluctuations. Although the use of plms (or Aprms) versus Re 
profiles affords very accurate determination of the critical 
Reynolds number, this approach is, as with the friction factor 
versus Reynolds number plots, indirect in that the rms values 

of the pressure fluctuations must be calculated from the psd 
data for the entire Re range. 

Although the present results were obtained in the absence 
of heat transfer, there is no reason that the method should 
not be used for situations involving surface heating or cooling. 
This observation is reinforced by the fact that the effects of 
surface cooling or fluid heating on pressure drop are most 
pronounced within the transition region. In laminar or tur
bulent flow, the relative magnitudes of the effect of heat trans
fer on pressure drop are small but, in the transition region, 
the pressure drop is much greater with than without heat trans
fer for a given Reynolds number (Obot et al., 1991). Also, 
since the onset of transition is determined largely by conditions 
occurring in the immediate vicinity of a surface, these methods 
should be applicable to other types of boundary layer flows. 
Finally, the availability of easily applied experimental methods 
should aid the design of full-scale investigations of the origin 
and mechanism of transition to turbulence. 
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Prediction of Three-Dimensional 
Developing Turbulent Flow in a 
Square Duct With an Anisotropic 
Low-Reynolds-Number k-e Model 
Three-dimensional developing turbulent flow in a square duct involving turbulence-
driven secondary motion is numerically predicted with an anisotropic low-Reynolds-
number k-e turbulence model. Special attention has been given to both regions close 
to the wall and the corner, which are known to influence the characteristics of 
secondary flow a great deal. Hence, the no-slip boundary condition at the wall is 
directly used in place of the common wall function approach. The resulting set of 
equations simplified only by the boundary layer assumption are first compared with 
previous algebraic stress models, and solved with a forward marching numerical 
procedure for three-dimensional shear layers. Typical predicted quantities such as 
mean axial and secondary velocities, friction coefficients, turbulent kinetic energy, 
and Reynolds shear stress are compared with available experimental data. These 
results indicate that the present anisotropic k-e turbulence model performs quite 
well for this complex flow field. 

Introduction 
Turbulent flow in noncircular ducts, commonly encountered 

in engineering practice, is characterized by the everpresent 
secondary motions in the plane perpendicular to the streamwise 
direction, and thus always of a three-dimensional nature for 
the mean velocity field. In general, the secondary motion is 
caused by two different mechanisms. The pressure-induced 
secondary motion (of Prandtl's first kind) exists in curved 
(circular) ducts and its magnitude can be quite large, say of 
the order of 20-30 percent of the streamwise mean velocity. 
On the contrary, the secondary motion encountered in straight 
noncircular ducts is caused by the turbulence and thus this 
secondary flow is present even under fully-developed condi
tions. The present paper is concerned with this turbulence-
driven secondary motion (of Prandtl's second kind). Although 
the magnitude of turbulence-driven secondary motion is smaller 
than the root-mean-square value of turbulence intensity, this 
motion distorts the streamwise mean velocity and temperature 
contours toward the corners a great deal and thus can have 
important consequences. Therefore, this particular secondary 
flow phenomenon has been a topic of interest to those who 
study complex, three-dimensional flows. 

From the experimental investigations Brundrett and Baines 
(1964) and Perkins (1970) have shown that the turbulence-
driven secondary flows in noncircular ducts result from the 
anisotropy of each Reynolds stress in the cross-sectional plane. 
Thereafter, a considerable number of experimental investi-

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
December 5, 1990. 

gations have been carried out to understand in detail turbulent 
flows in a straight square duct as the simplest geometry in 
which turbulence-driven secondary flows arise (see e.g., Mell-
ing and Whitelaw, 1976; Gessner et al., 1979). In addition, 
since these particular flow situations provide a natural vehicle 
for examining the validity of existing turbulence models, tur
bulence-driven secondary flows in a straight square duct are 
of special interest to modelers, and hence numerical investi
gations have also been carried out to accurately predict them 
by Launder and Ying (1973), Gessner and Emery (1981), Na-
kayama et al. (1983), and Demuren and Rodi (1984). Since the 
widely used (isotropic) k-e model has no built-in mechanism 
for the development of secondary flow due to its inherent 
isotropic characteristics, most of their methods are based on 
the algebraic Reynolds stress models. However, all these models 
are simplified for their original Reynolds stress models with 
several drastic assumptions which have not yet been verified. 
Also, they all have used the wall function approach as a wall 
boundary condition, whose validity is still unclear, at least, 
near the corner (e.g., Gessner, 1982). Moreover, since both 
regions close to the wall and the corner are known to influence 
the characteristics of secondary flow a great deal, this approach 
seems to be less than desirable from the standpoint of numerical 
prediction. 

Recently, the first author (Myong, 1988; Myong and Kasagi, 
1990a) has proposed an anisotropic low-Reynolds-number k-
e turbulence model which is valid right up to the wall. It is 
just an extended form of its isotropic version (Myong, 1988; 
Myong and Kasagi, 1990b), but broadens the range of appl
icability whilst maintaining most of popular features of the 
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latter. This model has already been found capable of predicting 
the anisotropic normal Reynolds stresses up to the wall with 
the correct wall-limiting behavior, and also proven to perform 
satisfactorily in several flow situations, including turbulent 
pipe and channel flows, two-dimensional boundary layer flows 
with and without pressure gradients (Myong and Kasagi, 1990a, 
c; Myong et al., 1990). These results suggest a possibility that 
this model can be used to predict more complex flows influ
enced by the anisotropy of Reynolds stresses, e.g., secondary 
flows in noncircular ducts and separated flows. 

The purpose of the present paper is to demonstrate that this 
anisotropic k-e model is useful for the prediction of three-
dimensional developing turbulent flows in a square duct in
volving turbulence-driven secondary flow. We will not use the 
wall function approach commonly adopted in the previous 
models, but use directly the no-slip boundary condition at the 
wall, since the regions close to the wall and the corner play an 
important role in the characteristics of secondary flow a great 
deal as mentioned above. The resulting set of equations are 
simplified only by the boundary layer approximation and com
pared with previous algebraic stress models. Then they are 
solved with a forward marching numerical procedure for three-
dimensional shear layer. It will be shown that the present 
anisotropic k-e model performs quite well for this complex 
flow field. 

The paper goes beyond the experimental investigation by 
paying particular attention to the predictions in both regions 
close to the corner and the wall, where little experimental data 
have been reported due to the difficulty of experimental meas
urement. These predictions are interesting in themselves and 
also provide a body of material which future modelers and/ 
or experimenters may wish to compare with their own results. 

Mathematical Model 

Reynolds Averaged Navler-Stokes Equations. The coor
dinate system and pertinent variables, as they apply for de
veloping flows in a square duct, are shown in Fig. 1. The three-
dimensional Reynolds averaged Navier-Stokes equations gov
erning the distribution of the mean velocity components in a 
straight duct are expressed as follows: 

Continuity equation: 

dU bV bW 

bx by bz (1) 

Fig. 1 
duct 

Coordinate system and pertinent variables in a straight square 
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Momentum equations governing the secondary velocities Fand 
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Stream wise (or longitudinal) momentum equation: 

It is noted that, using the boundary layer approximation, the 
stream wise momentum fluxes have been neglected, and the 
pressure gradient bP/bx originally appearing in Eq. (2) has 
been replaced by the cross-sectional average pressure gradient 
dP/dx, following the method of Patankar and Spalding (1972). 
By these boundary layer approximations the above equations 
become parabolic in the streamwise direction and consequently 

N o m e n c l a t u r e 

a = duct half width 
(Fig. 1) 

a' = diagonal half width 
(Fig. 1) 

C\, C2, C3 = turbulence model con
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are amenable to an efficient numerical forward marching so
lution procedures which are particularly economic. The viscous 
stress terms appearing in the momentum equations are not 
neglected, since, in the present calculation procedure, the no-
slip boundary condition at the wall is directly used in place of 
the common wall function approach as discussed above. 

From momentum equations of Eqs. (3) and (4) governing 
the secondary motion, it can be easily seen that the Reynolds 
stresses v1, w2, and ~vw play an important role in the secondary 
motion. Therefore, special attention is given to these stresses 
in the following sections introducing the turbulence model. 

Anisotropic k-t Turbulence Model. As a turbulence model 
for determining the Reynolds stresses appearing in the mo
mentum equations above, the anisotropic low-Reynolds-num
ber k-e turbulence model of the first author (Myong, 1988; 
Myong and Kasagi, 1990a) is introduced in the present study. 
This model is generally expressed as follows: 

Dk 

Dt 

De d 

Dt~dXj 

a 
~dXj 

\ oj dXj 
- c e , 

dUi 

•u,UJ-teJ-e (5) 

c'lku,Uj^j-Caf2T ( 6 ) 

2 (bUj dU\ k J^ ( 1 \ 

2 k (d-sfk^ 2 

3 e \ ox, 

= dU,dUj 
lij dx„ dx^ 

S « , = - • 3W 
1 (dUydUj dUydU\ 

2 \dXj dxy dXj dXy/ 

S}ij -' 
dXj dXj 

i — C^ V kL — C^f^ 

Wu(n,m) (la) 

(lb) 

(7c) 

(Id) 

(8) 

/„ = (l + 3 .45 /V^) [ l - exp ( - . y + / 70 ) ] (9) 

f2= { l - (2 /9 )exp[ - (7? r / 6 ) 2 ]} [ l - exp( - j + / 5 ) ] 2 (10) 

Wij(n,m)=-bij- Si„5Jn + 48imSjm (11) 

0-^=1.4, cr£ = 1.3, CEl = 1.4, Ce2=1.8, ^ = 0.09 (12) 

Note that the indices n and m denote the coordinate normal 
to the wall and the streamwise coordinate, respectively: sum
mation convention does not apply to n and m. 

From the trial test for the two-dimensional fully developed 
channel flow, the present model is known to resolve two serious 
weaknesses common to previous k-e models. That is, it repro
duces correctly all the major turbulence quantities such as 
Reynolds shear stress - tw, turbulent kinetic energy k and its 
dissipation rate e near the wall with the correct wall-limiting 
behavior. And, the present model also works well for the 
distribution of eddy diffusivity of momentum v, even in the 
region far from the wall (Myong, 1988; Myong and Kasagi, 
1990b). In addition, compared with the common (isotropic) 
k-e model, the present model has additive third and fourth 
nonlinear quadratic terms on the right-hand side in the Reyn
olds stress tensor of Eq. (7). The third term is important to 
exhibit the anisotropic characteristics of each Reynolds stresses 

across the whole region. In contrast, the fourth one is crucial 
to reproduce the strong anisotropy in the near-wall region and 
also to satisfy the wall-limiting condition of normal Reynolds 
stresses. Note that the v, in Eq. (7) is the same as that in the 
isotropic near-wall k-e model. Thus, the present anisotropic 
k-e model is supplemented with the original transport equations 
of k and e, but broadens the range of applicability while main
taining most of its popular features. These and other features 
of the model are described in more detail elsewhere (Myong, 
1988; Myong and Kasagi, 1990a, c). 

Application of (he Anisotropic k-t Model to Square Duct 
Flow. Since the turbulent flows in a square duct have the 
corner regions where both walls influence the flow field, this 
fact should be taken into account in the present anisotropic 
k-e model. First, the wall coordinate^ + appearing in the mod
ification functions of Eqs. (9) and (10) should be modified to 
take the effect of both walls into account. Up to the present, 
the correct form obtained theoretically does not still exist, 
although there are several proposals for this one (see e.g., 
Demuren and Rodi, 1984). In the present study, we replace it 
with the wall coordinate using the smaller value between per
pendicular distances from each wall; i.e. j> + =minO> + , z+). 
Second, the fourth term on the right-hand side of Eq. (7), 
which is crucial to satisfy the wall limiting condition of normal 
Reynolds stresses, is expressed as a superposition of terms that 
are attained by considering each wall independently. 

Based on the above consideration, the present model can be 
applicable to the turbulent flow in a square duct. In the present-
study, we can simplify further the transport equations of Eqs. 
(5) and (6) and each component of Reynolds stresses using the 
boundary layer approximations consistent with the above con
sideration for the momentum equations. Consequently, Eqs. 
(5)-(7) are expressed as follows: 

dk dk dk d 
U + v + w 

ox ay dz dy 

r/ v,\ dk 

V <v ay_ 

d 
+Tz [H)l] 

T70e r ^ 6 , r , de 3 

u—+v—+w—=— 
dx dy dz dy 

v + 
u,\ de 

° V dy. 

d 
H 

dz 

+ P~e (13) 

v,\ de 

Gtj dz 

2 

+ Cel^P-Ce2f2
e- (14) 

where 

P= -uv —— — uw 
dU dU -^dV -^dW 

dy dz dy 
w — (15) 

dz 

1 k 
u=-k + -p,-(2Cl-Ci) 3 e 

v = - k - 2v, — 
3 dy 

1 k 
-y~e 

dU\2 /dUx2' 

dy 

+ 2v • 

dz 

d4k\2 fdsfk 
dy dz 

(16) 

,'dU\2 /dU"2" 

(C,-2Q)(-J +(C1 + o(-

4 /dyfk\2 2 / W P 
3 I dy ) + 3 l dz j 

(17) 

610 / Vol. 113, DECEMBER 1991 Transactions of the ASME 

Downloaded 02 Jun 2010 to 171.66.16.104. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



w=-k-2v,-— 
3 dz 

1 k 

3 e 
( C '"2 C 3 ) lf)2 + (Cl + C 3 ) ( ^ 2 

«y = — v, 

k 
• v — 

e 

dU 

dy ' 

4 fd4k\2 2 /Wfc 
3 l dz I + 3 I 3j> 

uw= -v, 

_ /9fK 3 
+ Q^r • 

3J7 
dy 

dJJ 
dz 

dlf 

dz 

(18) 

(19,20) 

(21) 

The model constants C\, C2, and C3 are set equal to 0.8, 0.45, 
and —0.15, respectively, which are the same values as those 
proposed previously for boundary layer flows (Myong and 
Kasagi, 1990a, c). Note that one model constant C2 does not 
appear in the present case. Also, note here that, contrary to 
the previous Reynolds (or algebraic) stress models, the present 
anisotropic model is substantially derived from the standard 
(isotropic) k-e turbulence model; i.e., the standard k-e model 
is obtained in the limit as C,—0. 

It should be valuable to note here that, in the process of 
attaining the above simplified results from Eq. (7), the terms 
not having both the gradients of primary velocity among the 
nonlinear terms of velocity gradient are neglected by the usual 
order of estimation, while those of secondary velocity gradients 
in the linear terms are retained, because the same order of 
estimation between the linear and nonlinear terms of velocity 
gradient are generally not applicable. This is indirectly con
firmed by Demuren and Rodi (1984); they showed that the 
secondary velocity gradients in the linear terms play an im
portant role in the formation of secondary flows. 

Here, we briefly discuss the resulting forms of Reynolds 
stresses, comparing with those of the previous representative 
algebraic stress models of Demuren and Rodi (1984, hereafter 
DR) and of Launder and Ying (1973, LY). First, the expressions 
for the primary Reynolds shear stresses uv and uw of Eqs. 
(19) and (20) in the present model happen to be identical to 
those for eddy diffusivity formulation in the common isotropic 
k-e model, and also the same forms as those of both DR and 
LY models. However, they are obtained only by boundary 
layer approximation in the present model, but by drastic as
sumptions in the latter models. On this point of view, the 
present model seems likely to confirm, to some extent, the 
usefulness of the eddy diffusivity concept for the primary 
Reynolds shear stresses usually adopted in the previous alge
braic stress models with little theoretical foundation. Second, 
in the presentjnodel the separation of secondary normal Reyn
olds stresses w2-v2 is expressed as follows: 

• v2 = 2v, 
dV_dW 

dy dz 
-C3P,-

2 k 
+ - v -

3 e 

dJJY _ (dlf 
dy) ~\dz 

3 V P 2 

By 

'aVfc 
dz 

(22) 

This term as well as that of the secondary Reynolds shear stress 
vw of Eq. (21) is generally known to play an important role 
in the vorticity (or secondary flow) generation. Except for the 
third term in Eq. (22), both expressions of Eqs. (21) and (22) 
are in general similar to those of DR model which is known 
to be superior to any other existing models. In the DR model, 
however, they are obtained by using several ad-hoc assump
tions with unknown validity. In contrast, the present model 
has obtained these forms only by the boundary layer approx
imation as discussed above. In particular, the present model 
also confirms validity two different mechanisms that contrib

ute to the generation of secondary shear stress Vw identified 
by Perkins (1970); the first mechanism is associated with the 
gradients of the secondary velocities, and its contributions to 
vw can be represented in terms of an isotropic eddy diffusivity, 
while the second one is associated with the primary velocity 
gradients because of its close relation with the distortion of 
the primary stress field in the corner. Note that the importance 
to represent both these processes in a model is also reported 
by Demuren and Rodi (1984). Third, both secondary normal 
Reynolds stresses v2 and w2 of Eqs. (17) and (18) in the present 
model have the gradient terms of primary velocity in both y 
and z directions. On the contrary, most of the algebraic stress 
models involving the DR and LY models have only one di
rectional gradient term of primary velocity for each secondary 
normal Reynolds stress, which is clearly unreasonable on the 
physical ground. As a consequence, the above expressions for 
Reynolds stresses in the present model have strong similarities 
to those of previous algebraic stress models, but seem likely 
to be more appropriate on the physical ground. Furthermore, 
in contrast to the previous models the present model is directly 
applicable right up to the wall. 

Solution Procedure and Boundary Conditions. An effi
cient forward marching solution procedure is employed to solve 
the above equations, since they are parabolic in the stream wise 
direction. This procedure requires only two-dimensional stor
age of the dependent variables at each forward step, starting 
from given inlet conditions over the duct cross section. In the 
present study, a revised version of the three-dimensional par
abolic finite difference procedure of Patankar and Spalding 
(1972) is employed; in particular, the SIMPLER algorithm of 
Patankar (1980) is substituted for the original SIMPLE al
gorithm in an attempt to improve its rate of convergence. As 
the initial conditions, an essentially uniform distribution of all 
variables is prescribed at the duct inlet, following the available 
experimental conditions. For example, the secondary velocities 
V and W are set to zero, and the turbulent kinetic energy and 
mean streamwise velocity are given uniformly over the duct 
across section except for the vicinity of the wall, based on the 
experimental data. The dissipation rate e is assigned to small 
values such that the eddy diffusivity u, is several times the 
molecular viscosity v. Starting from these initial (or inlet) con
ditions, the step-by-step integration is carried out up to a lo
cation 100 duct hydraulic diameters downstream, where the 
nominally fully-developed flow is attained. At each step, the 
momentum equations are solved first with the SIMPLER al
gorithm, which consists of solving the pressure equation to 
obtain the pressure field and solving the pressure-correction 
equation only to correct the velocities. A more detailed pro
cedure of the SIMPLER is described by Patankar (1980). Sub
sequently, the Reynolds stresses are determined from the 
algebraic expressions of Eqs. (16)—(21) with the eddy diffusivity 
relation of Eq. (8), and finally the k- and e-equations of Eqs. 
(14) and (15) are solved. 

The forward step size is initially 0.01 percent of the duct 
hydraulic diameter D but progressively enlarged to a maximum 
level of 1 percent of D. At each step several iterations are 
carried out to reduce the residuals to negligible levels. The 
mesh typically comprises of a 66 x 66 grid points distributed 
nonuniformly over a cross section quadrant: the clustering 
function stretches the mesh in y and z directions by using the 
geometric progression, and three or four grid lines are, at least, 
within y + <5 (or z+ <5). These meshes are concentrated in 
the sublayer and buffer regions near the wall. Validation of 
the numerical procedure is achieved through comparisons be
tween the numerical results with different grid spacing and 
forward step sizes. For example, additional computations are 
also made with a 80x80 grid points, and all predicted tur
bulence quantities are found to be differed from those with a 
66 x 66, at most, by 0.3 percent. It should be valuable to note 
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Fig. 2 Friction coefficient for fully-developed flows in a square duct 

here that the condition of three or four grid lines, at least, in 
the sublayer mentioned above is crucial to the convergence 
and numerical accuracy. 

Boundary conditions are prescribed at symmetry planes and 
at solid walls, since the calculation is made in one quadrant 
only. At symmetry planes, the velocity component normal to 
the symmetry plane is set equal to zero, while for all other 
quantities the gradients normal to this plane are taken as zero. 
At the solids walls, all of the velocity components and Reynolds 
stresses are set equal to zero, and the dissipation rate is set 
equal to v(d2k/dy2)w or v(d2k/dz2)w. 

Results and Discussion 
The predicted distributions of the friction coefficient Cf for 

full developed flow in a square duct are compared with the 
experimentally determined values in Fig. 2. Note that the data 
shown, which were selected on the basis of a recent survey of 
corner flow data by Gessner, are cited from Gessner and Emery 
(1981). It is generally known that the predictions for Cf with 
the previous models have been somewhat unsatisfactory 
(Gessner and Emery, 1981). From the figure it can be seen 
that the present predictions agree quite well with the experi
mental results over a wide range of Reynolds number. It is 
informative to mention here the following facts. In the present 
model the average wall shear stress r^, is calculated directly 
from the local wall shear stress rw = fi,(dU/dy)„, which is dis
cussed below. Therefore, the present results seem likely to 
indicate indirectly the adequacy of the present model for near-
wall turbulence, since this affects strongly Cf. 

Hereafter, among the available experimental data those of 
Gessner et al. (1979) and Gessner and Emery (1981) are mainly 
compared with the predictions, largely due to the facts that 
these data are known to be relatively accurate and also adopted 
at the 1980-81 Stanford Conference (Kline et al., 1982). 

Figure 3 shows the predicted streamwise variation of the 
axial mean velocity component along the wall bisector x/a =1.0 
at several fixed distances from the wall over the interval 
0.02<j>/as 1.0. The experimental data are included for com
parison. The data indicate that the velocities in the central 
region increase first with streamwise distance, reach local peak 
values, and then decrease to asymptotic values. The local peak 
in the central region is due to the increased core flow accel
eration induced by simultaneous boundary layer development 
on all four walls. On the contrary, the velocities near the wall 
directly decrease to their asymptotic values without increasing, 
due to the presence of the wall. In particular, the peak of the 
centerline velocity occurs downstream of the location where 
the boundary layers begin to merge (x/D = 32), indicating that 
further adjustment of the flow takes place after the core flow 
becomes nonexistent. This is presumably due to the shear layer 
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Fig. 3 Predicted axial mean velocity distributions at various streamwise 
locations along the wall bisector x/a= 1 

interaction effects which lead to a non-equilibrium condition 
at about x/D = 32 (Gessner and Emery, 1981). The present 
predictions agree fairly well with experimental data over the 
entire calculation domain from the uniform distributions at 
the inlet to asymptotic ones at fully developed state, confirming 
the experimental evidence mentioned above. 

Figure 4 shows predicted axial mean velocity distributions 
along the wall and corner bisectors of a square duct at various 
streamwise locations. Note that the difference between the two 
sets of Gessner and Emery (1981) and Gessner et al. (1979) is 
a good measure of the experimental scatter, since they were 
obtained in the same experimental apparatus and under similar 
conditions. It can be seen that the predicted distributions along 
both the wall and corner bisectors are in good agreement with 
their experimental counterparts as a whole. 

Comparisons between predicted and experimental secondary 
velocity profiles are shown in Fig. 5 at various streamwise 
locations. Along both bisectors the present model predicts 
fairly well the secondary velocity, although it underpredicts a 
little the secondary velocity at x/D =84. Note that the exper
imental data indicate that the maximum velocity increases 
slightly from x/D = 40 to 84, but the present calculation shows 
the opposite trend; V and V decrease slightly there. This 
behavior is also observed by Demuren and Rodi (1984). Con
sidering this fact and reminding that there is considerable dis
agreement among the previous experimental data, particularly 
along the corner bisector, the present model's predictions seem 
likely to agree quite well with experimental data as a whole. 

The existence of secondary flow and its initial location in 
the developing region have been of the controversial problem 
in both experimental and numerical analyses. In experimental 
analysis this is mainly attributed to the fact that most exper
imenters conjecture the existence of the secondary flow from 
the isovel results of axial mean velocity without direct meas
uring the secondary flow (see e.g., Melling and Whitelaw, 1976; 
Ahmed and Brundrett, 1971), while in numerical analysis this 
is mainly attributed to the near-wall spatial resolution (see e.g., 
Gessner and Emery, 1981). The present predictions as shown 
in Fig. 5 shows that the secondary flow appears early near the 
corner in the entrance region (x/D = 8) and its influence con
sistently increases laterally as the flow progresses downstream. 
And, their presence is felt across the entire duct cross section 
when the flow is fully developed. This is consistent with the 
experimental evidence of Ahmed and Brundrett (1971). Note 
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Fig. 4 Velocity profiles at various streamwise locations 

that an inflection point close to the corner is found in the 
present prediction, although the cause of this fact is not clear 
at present. 

Figure 6 shows the predicted local wall shear stress distri
butions along the duct perimeter for fully-developed flow in 
a square duct. The experimental data are also included for 
comparison. Experimental data indicate that the wall shear 
stress first rises from the symmetry plane toward the corner 
with the peak shear stress about midway between the corner 
and the mid-point of the duct sides, and then falls again near 
the corner, approaching zero at the corner. Most previous 
models tend to predict local overshoot behavior of wall shear 
stress away from the corners and underpredict values in the 
near-corner regions (see Gessner and Emery, 1981). The present 
model, however, simulates the above mentioned experimental 
behavior excellently. Also, from Fig. 6 the present results bring 
out well the tendency of the secondary motion to smooth out 
variations in wall shear stress around the perimeter of the duct. 
It should be valuable to note here that the present result also 
lends support to the claim that the secondary motion has been 
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Fig. 5 Secondary velocity profiles at various streamwise locations 

simulated reasonably well by the model, since the occurrence 
of a local maximum in the wall shear stress distribution is due 
to the secondary motion. 

The predicted velocity profiles in wall coordinates are shown 
in Fig. 7, at four positions in the z direction, which are nor
malized by the local wall friction velocities at each position. 
It is generally acknowledged from the experimental investi
gations that, except near the corner regions, the usual inner 
logarithmic law of the wall is valid with a little scatter in the 
involved constants, while no universal defect laws are found 
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for the outer region (e.g., Leutheusser, 1963). The present 
prediction confirms clearly these experimental evidence as a 
whole. It also indicates that, although velocity profiles even 
near the corner region (z/a = 0.025) exhibit slightly wakelike 
behavior, the usual inner logarithmic law of the wall is still a 
good approximation, as experimentally reported by Gessner 
(1982), but the involved constants should be consistently varied 
over the relatively wide range of corner region. 

Figure 8 compares the predicted and measured distributions 
of the turbulent kinetic energy k along the wall and corner 
bisectors in the developing flow region of a square duct. The 
present prediction simulates excellently the experimental dis
tributions of turbulent kinetic energy over a whole calculation 
domain. The present model also predicts fairly well the ex
perimentally observed plateau-like behavior along a corner 
bisector (Fig. 8(b)). Furthermore, it can be seen from the figure 
that, as a whole predicted turbulent kinetic energy values de
crease a little between the shear layer interaction region (x/ 
Z) = 40) and the nominally fully-developed region (x/D = 84), 
which is in accord with the experimental evidence. Note that, 
along the wall bisector the present model predicts the similar 
behavior of k with a sharp peak in the vicinity of the wall to 
that for two-dimensional channel flow, while along the corner 
bisector it does not predict this characteristic behavior, perhaps 
due to the secondary motion. 

The predicted and measured development of Reynolds shear 
stress uv along the wall and corner bisectors are shown in Fig. 
9. The present model works fairly well along the wall bisector 
(Fig. 9(a)), but the distributions along the corner bisector (Fig. 
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Fig. 8 Turbulent kinetic energy profiles at various streamwise locations 

9(b)) are somewhat overpredicted, particularly near the corner 
region, although the model prediction shows qualitatively pretty 
well their behavior over a whole calculation domain. Here, it 
is valuable to mention that the values of Reynolds shear stress 
~uv near the corner region change rapidly along the tranverse 
(see e.g., Gessner, 1982) and thus the experimental data in this 
region may have somewhat large measurement uncertainties. 

Concluding Remarks 
Three-dimensional developing turbulent flows in a straight 

square duct involving turbulence-driven secondary flow are 
numerically investigated with the anisotropic low-Reynolds-
number k-e turbulence model. Contrary to most of the previous 
models, the present model has used directly the no-slip bound
ary conditions at the wall in place of the common wall function 
approach. The resulting set of equations are also simplified 
only by the boundary layer assumption and solved with a 
forward marching numerical procedure for three-dimensional 
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Fig. 9 Primary shear stress profiles at various streamwise locations 

shear layers. The predicted quantities such as axial mean ve
locity, friction coefficients, local wall shear stresses and Reyn
olds stresses are all in good agreement with the available 
experimental data. Secondary flow velocity profiles are also 
predicted well over the entire region. The present results show 
that the present anisotropic k-e model offers a viable alternative 
to higher-order closure models for predicting complex tur
bulent flows influenced by the anisotropy of Reynolds stresses. 

Finally, it should be noted the following facts. Most of the 
previous (algebraic stress) models used the wall functions ap
proach as the boundary condition, which is discussed above. 
This means that the mean velocity is artificially fitted to the 

universal velocity profile at the first grid point away from the 
wall. Consequently, they can yield a pretty good prediction 
near the wall region. However, generally this method is likely 
to be less than desirable from the standpoint of numerical 
prediction. In contrast, the present model uses directly the no-
slip condition at the wall and thus has no restricted conditions. 
Furthermore, all of the present results discussed above are by 
no means inferior to those of the previous higher-order models 
such as the DR model, although not shown here. 
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An Eddy Viscosity Calculation 
Method for a Turbulent Duct Flow 
The mean velocity profile across a fully developed turbulent duct flow is obtained 

from an eddy viscosity relation combined with an empirical outer region wake 
function. Results are in good agreement with experiments and with direct numerical 
simulations in the same flow at two Reynolds numbers. In particular, the near-wall 
trend of the Reynolds shear stress and its variation with Reynolds number are similar 
to those of the simulations. The eddy viscosity method is more accurate than previous 
mixing length or implicit function methods. 

1 Introduction 
It is useful to have a simple means of obtaining reliable mean 

velocity distributions in turbulent wall flows. Such distribu
tions may, for example, serve as input for engineering cal
culations such as integral and differential methods (e.g., Dean, 
1976) and for calculations of heat and mass transfer. 

It is well known that a turbulent wall layer can be described 
in terms of four regions (in order of increasing distance from 
the wall): a viscous sublayer, buffer, logarithmic, and wake
like regions. The mean velocity distribution can be written in 
the form (e.g., Coles, 1956) 

U+ =f(y MS (1) 

where/ ( j + ) represents the distribution across the inner region, 
which includes the sublayer, buffer, and logarithmic regions. 
Spalding (1961)j3roposed an implicit analytic relation in the 
form v+ = f(U+), while Dean (1976) obtained a single an
alytic relation for the whole layer by combining f with an 
expression for g. Other approaches use a mixing length dis
tribution, usually a modified form of van Driest's (1956) for
mulation, to determine/(j>+). The van Driest damping function 
has an exponential form which asymptotically merges into the 
log region. Granville (1989) reviewed a number of the van 
Driest type formulae that are used for turbulent boundary 
layers in pressure gradients and noted that many of these fail 
to match either the slope or intercept (or both) of the log law. 
He proposed a relation that satisfied both requirements but 
which (like most other proposals, including Dean's formula) 
did not exhibit the correct limiting behaviour for the Reynolds 
shear stress at the wall, i.e., -u+v+ ~ y+3 (Chapman and 
Kuhn, 1986; Kim et al., 1987). This was remedied in Granville's 
(1990) eddy viscosity formula for turbulent boundary layers 
with pressure gradients which was also compatible with the 
slope and intercept of the log law. We show here that this 
formula can, with minor modification, be successfully applied 
to a fully developed duct flow over a range of Reynolds num
bers. The addition of a suitable wake function g(y/h) provides 
the complete velocity profile from wall to centerline. 

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
October 17, 1990. 

There were two reasons for selecting a duct flow: (i) the 
distribution of the total shear stress is known theoretically; 
and (ii) the direct numerical simulation (DNS) data of Kim et 
al. (1987) form a very useful basis for comparison, especially 
in the near-wall region where reliable experimental data on the 
Reynolds shear stress are scarce. Correct mean velocity and 
Reynolds shear stress distributions in this region should be 
important pre-requisites for heat transfer calculations. As the 
DNS data have been obtained at low Reynolds numbers, where 
Reynolds number effects are greatest, they represent a fairly 
severe test for the calculation method. 

2 Description of Method 
The total shear stress T in a parallel planar duct is given by 

y+ - n r dU+ r/rr+ 
T+-(l + ^)^V=l-^r=-I7 T ir F + - , 

dy ft dy 

and Eq. (1) is replaced by 

u+=\ v^dy+ 

J0 1 + VT 

•«i 

(2) 

(3) 

where h, the duct half-width is used instead of 5. The assumed 
eddy viscosity i 4 , based on that used by Granville (1990), is 

v+=Ky+
T

+ 1 
-(4V •(£)'-,-*(£)' (4) 

with Ai = 0.06 and A2 = 70. The term in square brackets 
(not used by Granville) will be discussed in Section 4. Granville 

replaced Xo" by X + / \ / l + ap+, p+ being the nondimensional 
pressure gradient which governs the behavior of T + at the wall, 
viz. 

r+ = l+p+y+. (5) 

He found that particular values of the slope (K = 0.4) and 
intercept (C = 5.23) of the log law, viz. 

U+=n-llny+ + C, (6) 

could be matched with (constant) X+ = 24 and a equal to 14.5 
(p+ > 0) or 18.0 (p+ < 0) but we preferred to specify K and 
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C values directly and calculate the appropriate X0
+. The y+1 

term in Eq. (4) ensures the correct y+i variation of vf near 
the wall while giving approximately the correct rate of decay 
for the damping function, and the combination K)>+T+ allows 
the slope of the log law to be matched. Note that Eq. (2) 
represents the correct shear stress distribution throughout the 
duct flow, whereas in the case of a boundary layer with pressure 
gradient, Eq. (5) is valid only near the wall. 

In Granville's paper, the focus was primarily on the wall 
region so that the wake function term in (3) was not considered. 
The wake function adopted here is based on that suggested by 
several investigators (Dean, 1976; Finley et al., 1966; Granville, 
1976), i.e., 

1 / \ 2 1 / \ 3 

i- ^ M i , , _ M (7) 
r = - ( l + 6 n ) l ^ - a + 4 i i ) 

where IT depends on the Reynolds number, and h replaces the 
boundary layer thickness 5. The origin for the wake function 
is moved slightly away from the wall, however, to yt = (h +/ 
10) - 10, with g = 0 for y < yx and (y - y\)/(h - yx) 
replacing^/'2 inEq. (7). This is because dg/dy+, though small, 
is larger than -u+v+ close to the wall, and would cause errors 
when -u+v+ is calculated from Eq. (2). 

The value of X0
+ for Eq. (4) is determined (in a computer 

program) by ensuring that the calculated distribution of U+ 

satisfies input values of both K and C, as follows. If 

dU+ 1 
dy+ 1 + vf ny+ 

at some point y+ = yd' near the beginning of the log region, 
then 

Xo + : 
v + 2 

In 
Jxy0T 

- + A, 0/ _ O W / 

(8) 

which is solved iteratively to obtain Xo" for a specified yf . At 
yd , U+ is given by Eq. (6) so that 

,1 _+ fta-ffl 

C= 
l + vf 

dy+ + I in 

0 

' 0 r y 
l + vf 

d(lny+). (9) 

An initial guess for yd is made in the program, and \d and 
C are calculated from Eqs. (8) and (9). The guess is refined 
until the calculated Cis equal to the specified value ±0.001, 
which usually requires no more than three iterations. In gen
eral, yo « 50. 

Fig. 1 Product y*dU*ldy+(h 
calculation; , DNS. 

1000 

, present 

3 Results: Comparison With DNS Data 
Mean velocity distributions were calculated for the same 

conditions as the available DNS data in a fully developed 
turbulent duct flow. The DNS were carried out at two Reynolds 
numbers, Re = 3300 and 7900, or equivalently, for h+ = 180 
and 395. Details of these simulations are given by Kim et al. 
(1987) and Kim (1989). 

Apart from h +, the program requires K, C, and II as inputs. 
The existence of these parameters hinges on the existence of 
a logarithmic region. For the relatively small values of h+ at 
which the DNS were performed, the existence of a logarithmic 
region may be in doubt, especially for h+ = 180. This aspect 
has been discussed in some detail by Spalart (1988) who sug
gested that the logarithmic layer, or the "apparent logarithmic 
layer" for very low Reynolds numbers, can be found by seeking 
the minimum of y dU/dy versus y. The minimum should have 
a magnitude of K~\ and the value of C can be determined at 
this_position. As for Spalart's boundary layer distributions of 
y dU/dy, the present DNS distributions for the duct (Fig. 1) 
exhibit narrow minima and imply different values of /c_1. At 
low Reynolds numbers, however, the value of y at which the 
logarithmic region begins (y+ « 40) exceeds the value at which 
the wake region becomes significant (y « 0.15/*). Thus it is 
reasonable to assume a lower value of K~ ' than implied by the 
y dU/dy plot in such cases, and allow the wake function to 
make up the difference. Huffman and Bradshaw (1972) found 
no evidence that K varied with Reynolds number for several 
wall-bounded flows, but pointed out that there is some freedom 
in selecting the actual value of the constant K. They found that 
C can be Re-dependent, however. For the present comparison 

N o m e n c l a t u r e 

a = 

A, . A2 = 
A+ = 

C = 
dx = 

f.fi = 

g = 
h = 

I = 
P = 

Re = 

pressure gradient coefficient 
of Granville (1990) 
constants in Eq. (4) 
van Driest damping length 
scale 
log-law intercept, Eq. (6) 
coefficient in series expan
sion of U+ 

inner region mean velocity 
functions 
wake function 
duct half-height 
mixing length 
non-dimensional pressure 
gradient, Eq. (5) 
Reynolds number = U\h/v 

<*h 

U 
U\ 
uT 

u, v 

x,y 

yo 
y\ 
Pi 

mean velocity in x direction 
centerline velocity 
friction velocity ( = Vn^) 
velocity fluctuations in x, y 
directions 
longitudinal and normal-to-
the-wall coordinates _ 
y value where calculated U 
matches the log-law 
origin for wake function 
coefficients in series expan
sion of -u + v+ 

boundary layer thickness 
von Karman constant, 
Eq. (6) 

X, X0 = eddy viscosity damping 
parameters 

X, = mixing length damping 
parameter 

v = kinematic viscosity _ 
vT = eddy viscosity = -uv/(dU/ 

dy) 
n = wake parameter, Eq. (9) 
T = kinematic total shear stress 

Superscript 
+ = normalization by wall vari

ables (UT and/or v) 

Subscript 
w = value at the wall 
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Fig. 3 Reynolds shear stress distributions (f)+ = 180 and h+ = 395). 
, present calculation; , DNS. 

with DNS results, K is assumed constant at 0.44, but the value 
of C varies (see below). _ 

The calculated distributions of y+dU+/dy+ are shown in 
Fig. 1 and they follow the DNS distributions quite well. The 
quality of agreement with the DNS results is partly due to the 
term in square brackets in Eq. (4): without this term, the 
calculation results are slightly high at y+ ~ 10, and low by 
more than 10 percent at y+ « 30. The form of this term is 
chosen because of its effect on uv (discussed further in relation 
to Fig. 4). _ 

Figure 2 shows distributions of U+ for the DNS and the 
calculation, and also shows pitot tube measurements (Hussain 
and Reynolds, 1975) at Re = 13800 compared with calculation 
results for h + = 650. The values of Cand II used in calculations 
we reC= 6.2, 6.0, 5.8 and II = 0.04, 0.09, 0.16 corresponding 
to h+ = 180, 395 and 650. The presentation in Fig. 2 (which 
is the one commonly used in the literature) is not as sensitive 
as that in Fig. 1 in terms of emphasizing differences between 
the calculations and the DNS (or experimental) data, but the 
agreement is clearly very good. 

Distributions of -u+v+, inferred from the mean velocity 
calculation via Eq. (2), agree closely with the DNS distributions 
(Fig. 3). The magnitude of the differences would be well within 
the uncertainty in any experimental data. The limiting behavior 
of -u+v+ near the wall (Chapman and Kuhn, 1986; Kim et 
al., 1987) may be analyzed with the aid of Taylor series ex
pansions (e.g., Antonia and Kim, 1991b): 

-a1y
+i + Po'+« + 

U+ =y* J_ 
~2h 

Ty+2 + diy
+4+-

h+=395-

100 1000 

Fig. 4 Ratio -u*v*ly* 
present calculation; 
, Dean (1976). 

dV 

(h* 
DNS; 

180 except where indicated). - - - , 
• , mixing length; 

vT = —u v dy+ = ao> + 3 + 

For our choice of vj-, Eq. (4), 

v T •• 

X0
+ + 2 r + * M i 

I 1 

+£. b+4+ 

X0
+3 Ao + V 

y+4 + 

where aj = -4dt [this follows from Eq. (2)]. Therefore, 

so that a, s K/\Q2. Plotting -u+v+/y+3 (Fig. 4) indicates 
that the values of a\ are lower for the calculation than the 
DNS, but the general shape of the curves and their behavior 
with increasing h+ are similar. This is partly because of the 
square brackets term in Eq. (4). The form of this term was 
specifically chosen for its effect on the value of /3i, but the 
constants Ax and A2 were selected for best agreement in the 
y^dU+/dy+ results (which emphasizes the interdependence of 
U+ and -u+v+). If the square brackets term is omitted (i.e., 
Aj = 0), /Si is negative, although a\ may be somewhat im
proved. The present method (with positive ${) yields substan
tially more accurate values of -u+v+ for y+ > 3. 

The results presented so far apply to a fairly restricted range 
of Reynolds numbers, and ideally that range could be extended 
by means of comparisons with experimental data. Unfortu
nately, published velocity profiles show significant variations 
(see Fig. 14 of Hussain and Reynolds, 1975, for example), 
which means that definitive values of K, C, and II cannot be 
given at this stage. The data of Shah (1988) cover the range 
3300 < Re < 33000 (180 < h+ < 1350) and agree adequately 
with the results presented so far where they overlap, and there
fore they can at least indicate the trend at higher Re. These 
data suggest that with K = 0.44, C and II are constant at 5.7 
and 0.3, respectively, for Re 5: 17000 (h+ > 750), although 
the value of II implied for h+ = 650 is a bit larger ( = 0.25) 
than the value of 0.16 used for the uppermost curve in Fig. 2. 
Thus the eddy viscosity calculation method requires only one 
input parameter at h+ S: 750, viz. h+ itself. 

The damping parameter X0
+ varies only a little with Re, 

decreasing from 30.98 at h+ = 180 to an asymptotic value of 
about 27.4 at high Re. This behavior is qualitatively similar 
to the variation of A+ with h+ obtained by Huffman and 
Bradshaw (1972). These authors used a modified van Driest 
mixing length distribution with a constant value for K and 
obtained reasonable agreement (up to y « 0.2 h) with the 
experiments of Patel and Head (1969), mainly in the range h+ 

< 180. However, the van Driest mixing length distribution has 
an incorrect limiting wall behavior and although the results 
obtained with it (Antonia and Kim, 1991a) compare favorably 
with the DNS data over a major part of the flow, the com
parison is not as good as with the present method. The sug
gestion that there is negligible Re-dependence of the wake 
region in the duct (Huffman and Bradshaw, 1972) is not borne 
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y+ 

Fig. 5 Product y+dU+ldy+, obtained with Granville's (1989) mixing 
length distribution or Dean's (1976) formula, for h* = 180. , mixing 
length; , Dean (1976); , DNS 

out by the present results, although the dependence appears 
to be less than that in a zero-pressure gradient boundary layer. 

4 Other Methods 
Results from an assumed mixing length distribution and 

from the relation proposed by Dean (1976) are now compared 
with the DNS data. 

The mixing length distribution 

/ + = « y + T + , / 2 ( l - e " x ' + (10) 

is very similar to that used by Granville (1989) for boundary 
layers with pressure gradients. The details of the calculation 
are very similar to those outlined in Section 2, Eq. (10) being 
used instead of Eq. (4) as the starting point for the determi
nation of U+ in the inner region and Eq. (7) retained for the 
outer region wake function. The magnitude of Xi+ was obtained 
iteratively in order to match the slope and intercept of the 
logarithmic region. 

Dean's (1976) implicit relation is given by 

y+eKS=MU+) 

with g given by expression (7) a n d / i ( t / + ) given by 

/ , ( t / + ) = t/+ 

(11) 

+ e > + , 7?+ iKU+) {KU+) KU+) 
6 l KU 2 3! 4! 

Newton's iteration method was applied to Eq. (11) to obtain 
U+ for any given y+. Equations (10) and (11) were applied to 
the DNS conditions using the input values obtained directly 
from the DNS curves, i.e., K, C, and II = 0.4, 5.37, -0.055 
(/;+_= 180) or 0.43, 5.72, 0.072 (h+ = 395). Distributions of 
y+dU+/dy+ for h+ = 180 (Fig. 5) indicate that agreement 
with the DNS data is not of the same quality as in Fig. 1, 
especially with regard to the lack of a local minimum at y+ 

« 50. Note also that Dean's relation underestimates the y 
location of the main local maximum in y+dU+ /dy+. Results 
are only slightly better at h+ = 395. Both relations have a 
limiting wall behavior which is incorrect, as is evident in the 
- u+v+/y+* distributions for h+ = 180 in Fig. 4. The errors, 
in particular the negative values, are caused partly by the fact 
that the wake function, Eq. (7), has its origin at the wall, but 
when the wake function is made exactly zero for y+ < 10 the 
curves are still incorrect, implying that -u+v+ varies as y+A. 

This does not cause practical errors, since -u+v+ << r+ 

near the wall, but a method (such as the present one) which 
has the correct limiting behavior is likely to be more robust in 
general. 

5 Conclusions 
The present approach, which combines an eddy-viscosity 

based calculation for the inner region with a specific choice 
of wake function in" the outer region, yields mean velocity and 
Reynolds shear stress distributions which are in close agreement 
with direct numerical simulation of a fully developed turbulent 
duct flow. In particular, the wall-limiting behavior and Reyn
olds number dependence of the Reynolds shear stress are in 
qualitative agreement with the simulations, which is not the 
case for the mixing length approach or the implicit relation 
used by Dean (1976). The eddy-viscosity approach should be 
valid for all Reynolds numbers for which a logarithmic region 
can be identified, and should also be valid in pipe flows. For 
fully developed channel flow, the von Karman constant K is 
assumed to be fixed at 0.44, while the log-law C and the wake 
parameter II vary at low Reynolds numbers only. 
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Mean and Turbulence 
Characteristics of a Class of 
Three-Dimensional Wall Jets—Part 
1: Mean Flow Characteristics 
This paper reports experimental investigations on mean and turbulence character
istics of three-dimensional, incompressible, isothermal turbulent wall jets generated 
from orifices having the shapes of various segments of a circle. In Part 1, the mean 
flow characteristics are presented. The turbulence characteristics are presented in 
Part 2. The influence of the geometry on the characteristic decay region of the wall 
jet is brought out and the differences with other shapes are discussed. Mean velocity 
profiles both in the longitudinal and lateral planes are measured and compared with 
some of the theoretical profiles. Wall jet expansion rates and behavior of skin-
friction are discussed. The influence of the geometry of the orifice on the various 
wall jet properties is presented and discussed. Particularly the differences between 
this class of geometry and rectangular geometries are critically discussed. 

1 Introduction 
Wall jets can be recognized as an example of the interaction 

between free jets and boundary layer types of flows. These 
have been attracting a great deal of attention of research work
ers and they are being increasingly investigated. Glauert (1956) 
analyzed the turbulent wall jet by dividing the flow regime into 
two parts: the region between the wall and the point of max
imum velocity as a normal boundary layer, called the inner 
layer; and the rest of the wall jet with the features of a free 
jet, called the outer layer. He matched the solutions for these 
two layers at the point of maximum velocity of the profile 
where the shear stress was assumed to be zero. Since Glauert's 
pioneering work, many studies have been conducted on plane, 
axisymmetric, and radial wall jets and a complete review of 
the wall jet has been given by Launder and Rodi (1981). Three-
dimensional wall jets, which occur more often in practical 
situations, have started receiving attention only in recent times. 
These flows can be found in many fields of engineering such 
as the boundary layer control of airfoils, effective film cooling 
of turbine blades, and in the design of air vents for ventilation 
purposes. 

When the aspect ratio of the orifice from which the jet issues 
onto a solid boundary is finite, the wall jet becomes three-
dimensional. The variation of flow properties should then be 
considered not only in the longitudinal direction but also in 
the lateral direction. The first published work on three-di
mensional wall jets is the experimental study undertaken by 
Sforza and Herbst (1970). They investigated wall jets formed 
on a flat plate by jets issuing from rectangular orifices of 
various eccentricities. The eccentricities (height/length) of the 

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
April 25, 1991. 

orifice used by them were 0.025, 0.05, 0.1, and 1.0. Based on 
the detailed velocity profile measurements, they divided the 
flow field into three regions depending on the maximum ve
locity decay along the axial direction: (a) the potential core 
(PC) region, where the maximum velocity Um is equal to or is 
very close to the jet exit velocity U/, (6) the characteristic decay 
(CD) region, where the decay of the maximum velocity depends 
on the geometry of the orifice, and (c) the radial decay (RD) 
region, where the flow field becomes independent of the ge
ometry of the orifice and the maximum velocity decays at the 
same rate as that for a radial wall jet (Bakke, 1957). Three-
dimensional wall jets have been generated by using orifice 
geometries other than rectangular (e.g., circular, semi-circular, 
square, and elliptic geometries). A summary of these investi
gations is given in Part 2 of the paper in which the turbulence 
results are also presented. 

Three-dimensional wall jets produced by various orifices of 
different aspect ratios have their own characteristics in the CD 
region. Particularly the investigations of Sforza and Herbst 
brought out the properties of wall jets generated by rectangular 
shapes which have flat sides. Another class of nozzle geometries 
which can be used to generate three-dimensional wall jets are 
the segments of a circle. In this case, the nozzle shape across 
trie cross-section changes continuously when compared to the 
nozzles having the shape of rectangular geometry. It was felt 
important to study the flow fields (mean and turbulence) of 
three-dimensional wall jets produced by this class of geome
tries. A comparison of these characteristics with those obtained 
by the use of rectangular nozzles would then give information 
which could be useful to understand the growth and interaction 
of shear layers emanating from different orifice shapes and 
which could also be effectively used in many practical appli
cations. For example, the difference in the spread rates could 
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Circular orifice 

Flat plate 

Fig. 1 Definition sketch of orifice configuration (h/d) employed, (a) hi 
d=0.1; (b) hld=0.&; (c) h/d=0.5; (d) /)/d=0.23. 

be advantageously utilized in air-venting systems and drying 
processes. 

For these reasons, investigations are carried out in the de
veloping and fully developed regions of three-dimensional wall 
jets generated by the impingement of free jets issuing tangen-
tially onto a smooth flat plate from the orifices having ge
ometries of various segments of a circle (see Fig. 1). The 
different orifice geometries defined in terms of h/d ratios were 
obtained by laterally moving a flat plate positioned vertically 
in front of a circular orifice. The dimension "h" is the distance 
normal to the plate from one edge of a circular orifice in the 
diametral plane and "d" is the diameter of the circular orifice. 
The different h/d ratios employed in the present investigation 
were 1.0, 0.8, 0.5, and 0.23. The corresponding values of h/ 
\[A, where A is the area of the respective segments, are 1.19, 
0.98, 0.80, and 0.60. The various geometries will be referred 
to in terms of h/d ratios. 

The mean flow measurements made in the present investi
gations include mean velocity profiles, maximum velocity de
cay, growth rates in the longitudinal and spanwise directions, 
and skin-friction estimates covering an axial distance up to 

77777/7 77/7// 777///77Z / 777777777r7''7~77~ 
(All dimensions in mm) 
(NOT TO SCALE) 

Fig. 2 Schematic diagram of experimental setup. 
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Fig. 3 Schematic representation of three-dimensional wall jet flow field. 
Velocity profiles in (a) PC region; (b) CD and RD regions; x-axis orifice 
plate centerline. 

one hundred orifice slot widths along the jet axis. The results 
obtained are discussed in relation to the available data for 
other geometries. The results of the turbulence measurements 
are presented in Part 2 of the paper. 

2 Experimental Procedure 

2.1 The Test Setup. All the measurements reported were 
performed using the low speed jet tunnel of the Fluid Me
chanics Laboratory, Indian Institute of Technology, Madras. 
Figure 2 shows schematically the jet tunnel and the general 
layout of the experimental arrangement. Air is supplied from 
a centrifugal blower and it is controlled by a throttle placed 
in the inlet section. The air stream is led into a settling chamber 
through a set of four screens. An orifice plate was positioned 

Nomenclature 

A = cross-sectional area of a seg
ment of a circle 

A = constant appearing in law-of-
the wall 

B = constant appearing in law-of-
the wall 
skin-friction coefficient 
diameter of circular orifice 
eccentricity of rectangular 
orifice (height/width; dimen-
sionless) 
distance normal to the plate 
from one edge of the circular 
orifice, see Fig. 1 

K = constant as given in Eq. (3) 
k = (ym/2-ym) as shown in Fig. 3 
N = constant as given in Eq. (3) 

cf = 
d = 
e = 

h = 

ymn = value of y for which U= Um/ 
n 

Ked 

&ym 

u 
Uj 

u,„ 
u. 

u+ 

Xo 
y 

ym 

= exponent describing the decay 
of maximum velocity in Eq. 
(1) 

= jet exit Reynolds number 
(=Ujd/v); dimensionless 

= Reynolds number based on ym 

( = Untym/v)\ dimensionless 
= mean velocity in jc-direction 
= jet velocity at orifice exit 
= maximum velocity at any sta

tion along x-direction 
= wall shear stress velocity 

( = V V P ) 
= U/U„ ( = dimensionless) 
= virtual origin of the jet 
= transverse direction (normal 

to the plate) 
= value of y where U= U„, 

y+ 

z 

Zm/2 

V 

P 
Oi 

TO 

2 
= yUJv ( = dimensionless) 
= spanwise direction (parallel to 

the plate) 
= value of z for which U= Um/ 

2 
= kinematic viscosity of the air 
= density of air 
= constant in Glauert's profile 
= shear stress at the wall 

Subscript 

(") 

CD 
DC 
PC 
RD 

= indicates normalization with h 
(e.g., x = x/h) 

= characteristic decay 
= direct current 
= potential core 
= radial decay 

Journal of Fluids Engineering DECEMBER 1991, Vol. 113/621 

Downloaded 02 Jun 2010 to 171.66.16.104. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



All dimensions in mm 

Fig. 4(a) Sketch showing nozzle assembly and jet axis 

(b) h/d =0 .8 

Fig. 4(b) Three regions of flow development of wall jet for h/d=0.8 

(c) h/d = 0.23 

Fig. 4(c) Three regions of flow development of wall jet for h/d =0.23 
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Fig. 5(3,b) Normalized free jet velocity profiles in x-y plane (uncertainty 
in U= ± 2 percent in average; uncertainty in y=0.5 mm). , mean 
curve of axisymmetric free jet due to Schlichting (1968). 
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Fig. 6{a,b) Normalized free jet velocity profiles in x-z plane (uncertainty 
in t/= ±2 percent in average; uncertainty in z=0.S mm). , mean 
curve of axisymmetric free jet due to Schlichting (1968). 

Fig. 7 Decay of centerline axial velocity and turbulence of 19.1 mm 
diameter free jet (uncertainty in U= ± 2 percent; uncertainty in x=0.5 
mm; uncertainty in u/Um= ±10 percent in average). 

at the end of the settling chamber. This plate was made of 
brass with a 19.1 mm diameter orifice and conformed to Indian 
Standard-2952 (Fig. 4). Before carrying out the wall jet meas
urements, the characteristics of free jet issuing from the 19.1 
mm dia orifice were determined. These are shown in Figs. 
5(a,b) and 6(a,b), and 7. It can be seen from these figures that 
the flow field characteristics of the jet correspond to those of 
standard free jets (Abramovich, 1963; Schlichting, 1968). 

The different orifice geometries, defined in terms of h/d 
ratios (Fig. 1), were obtained by moving laterally (normal to 
jet axis) a flat plate kept vertically in front of the circular 
orifice plate. Further details of orifice plates employed are 
given in Table 1. 

A smooth polished flat plate of size 1.45 mx2.05 mx 18 
mm and made of teak wood was used to generate the wall jets. 
The plate was fixed vertically to an apparatus having three 
degrees of freedom to facilitate easy alignment and movement 
of the flat plate. The leading edge of the plate was chamfered 
to 45 deg (to avoid pressure-gradient effects due to a rounded 
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Table 1 Details of various orifice shapes used 

* 
* 
* 

** 

Serial 
number 

1 
2 
3 
4 

h 
(mm) 
19.10 
15.28 
9.55 
4.45 

d 
(mm) 
19.1 
19.1 
19.1 
19.1 

h/d 

1.00 
0.80 
0.50 
0.23 

h/y/A 

1.12 
0.98 
0.80 
0.60 

•Serial numbers 1, 2, and 3 were generated from the circular orifice plate of 
19.1 mm diameter. 
*'Serial number 4 has been fabricated independently to have the shape of h/ 
rf=0.23. 

A = Area of the various segments of the circle (mm2). 

leading edge) and was placed at a distance of 2 mm from the 
face of the orifice so as to facilitate smooth lateral movement 
of the plate in order to generate different h/d ratios. 

A traversing mechanism (make: AVA, Gottingen) with three 
translatory degrees of freedom and two rotational degrees of 
freedom was used for probe traverse. Displacement of the 
probes larger than 1 mm, and away from the wall, was meas
ured by scales fixed to the traversing mechanism. Near-wall 
measurements were made by using dial gauges (least count: 
0.01 mm) mounted on magnetic bases. The symmetry of the 
flow was checked by taking a few measurements on either side 
of the jet axis at equidistant points from the jet axis. During 
the experiments the wall static pressure indicated by a Betz 
manometer was used to monitor the jet exit velocity. Over the 
duration of any run (which lasted about 4 hours) the change 
in the temperature of the jet was about 2° to 3°C. This variation 
has been neglected in analyzing the experimental data. All the 
measurements for each h/d ratio, were carried out at a jet exit 
velocity of 80 m/s. Corresponding to this velocity the exit 
Reynolds number (Red) is 9.54 x 104. With the velocity of 80 
m/s, the exit Mach number is about 0.25 which is rather high 
for tests in the incompressible regime. Still, the compressibility 
effects will be quite small. 

A total pressure probe was used to obtain the mean velocity 
profiles at all the stations along the jet axis where it was pro
posed to make the hot wire measurements at a later time. The 
static pressure was assumed to be everywhere equal to. the 
measured still air value. The probe was of standard design and 
made out of stainless steel tubing of 1 mm outer diameter. 
Prandtl manometer and an inclined tube manometer (make: 
AVA, Gottingen) whose inclination could be varied in steps, 
were used to record the pressure from the total pressure probe. 

A cartesian coordinate system, as shown in Fig. 3, was cho
sen with the origin located at the center of the orifice plate 
with the x-axis oriented along with the centerline of the jet. 
This figure also shows the velocity and length scales for PC, 
CD, and RD regions used in the present investigations. 

2.2 Comments on the Data. In the present investigation, 
the plate used (on which wall jets have been generated) is made 
of wood (nonconducting) and as such wall correction was not 
applied to the measured data. Bhatia et al. (1982) have found 
such corrections are not required if the material of the plate 
is nonconducting. The difference between the readings of mean 
velocity obtained from total pressure probe measurements and 
those obtained from the d-c outputs of a hot wire anemometer 
(details of the hot wire anemometry used are given in Part 2 
of the paper) showed a difference of 5 to 10 percent in the 
inner region and 12 percent in the outer region of the wall jet. 
Chao and Sandborn (1966) and Bandyopadhyay (1974) have 
observed a difference of the order of 10 percent between the 
mean values obtained by total probe and the hot wire results. 
Repeatability of mean velocities made with the total pressure 
probe was within 2 percent. Displacement correction required 
was performed using the formula of Macmillan (Pierce and 
Zimmerman, 1973) and it was found that there was hardly any 
difference between the velocity profiles obtained with and with-
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Fig. 8 Decay of maximum velocity in the plane of symmetry of the wall 
jet (a) h/d=0.S; (b) h/d=0.23 (uncertainty in x = 0.5 mm; uncertainty in 
U= ±2 percent in average). 

out correction. The velocity at the exit of the orifice plate was 
very uniform and the variation was less than 0.5 percent. 

The uncertainty levels in the measurements are indicated in 
each of the figures. 

3 Results and Discussions 
The important overall characteristics for a three-dimensional 

wall jet are expressed by (a) the rate of decay of the maximum 
axial velocity; (b) the mean velocity profile and its similarity 
form; and (c) the rate of expansion of the wall jet half-width. 
These are described in the same order in the subsequent sec
tions, for all the four geometries tested. Axial distances "x" 
along the jet axis were normalized by the dimension "h". The 
velocity scale is Um, the local maximum velocity at any station 
along the jet axis. 

3.1 Decay Rate of Maximum Velocity. In a three-di
mensional wall jet, the decay of the maximum velocity in the 
plane of symmetry can be expressed in a power-law form: 

where Um is the maximum velocity for any x and Uj is the jet 
efflux velocity. Sforza and Herbst (1970) have divided the flow 
field of a three-dimensional wall jet into three regions (PC, 
CD, and RD regions) depending on the decay rate of the 
maximum velocity as mentioned earlier. 

The decay of the maximum velocity in these three regions 
for all the four geometries tested (h/D= 1.0, 0.8,0.5, and 0.23) 
were obtained and the results for h/d =0.8 and 0.23 are shown 
in Figs. 8(a) and 8(b), respectively. The decay-rate exponents 
for the different geometries in various regions of wall jets are 
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Table 2 Axial variation of Um for two-dimensional and three-dimensional wall jets 
Streamwise 

variation of Um 
in CD region 

Streamwise 
variation of t/„ 
in RD region Type of wall jet Investigators Date h/d e eccentricity 

Length of 
CD region 

Two-dimensional 

Radial 

Three-dimensional 

Sigalla 
Bradshaw and Gee 
Schwarz and Cosart 
Myers et al. 
Bakke 
Bradshaw and Love 
Poreh et al. 

Sforza and Herbst 

Newman et al. 
Rajaratnam and Pani 
Gowda 
Swamy et al. 
Torukoso and Hideo Ohashi 

Present data 

1958 
1962 
1961 
1963 
1957 
1959 
1967 

1970 

1972 
1974 
1973 
1975 
1982 

— 
— 
— 
— 
— 
— 
— 

1.00 
1.00 
0.50 
0.50 
0.50 

1.00 
0.80 
0.50 
0.23 

— 
— 
— 
— 
— 
— 
— 

0.025 
0.050 
0.100 

— 
— 
— 
— 
— 

— 

— 
— 

X 

X 

X 

X 

X-050 

x-°" 
^-0 .55 

- (0.49*0.03) 

x-°M 

^.-0.44 

x - 0 . , 6 

— 
X-°M 

x-"-6'6 

— 
-(0.75 ±0.01) 
-(0.67 ±0.01) 
-(0.63 ±0.01) 

x - 0.852 

^.-(1.12*0.03) 

* - ' - 1 2 

x-IAD 

X~iA 

for all e 

x~'° 
x~x.a 

— 
x-,A 

^-(1.27±0.02) 

-(1.15±0.02) 
^-(1.12*0.04) 

x-il.\S±0.0l) 

x - 1 . 1 6 

— 

X/We 
20 to 200 
20 to 100 
10 to 40 

— 
— 
— 
— 

x/h 
10.0 to 18.0 
10.0 to 22.5 
10.0 to 20.0 
10.0 to 30.0* 

e = eccentricity = height of orifice/length of orifice. We = width or length of the rectangular orifice. * = length of transitional region. 

x«r 
Fig. 9 Decay of maximum velocity in the plane of symmetry of the wall 
jets (with square root of the area of orifice as the parameter). (For un
certainty limits see the caption of Fig. 8). 

shown in Table 2. This table also includes the data obtained 
by earlier investigators both for the three-dimensional and two-
dimensional wall jets. For all the orifices tested, the influence 
of the geometry can be seen in the values of decay-rate ex
ponents in the CD region. When the decay rates and the extent 
of the CD region for the present class of geometries and the 
rectangular shapes investigated by Sforza and Herbst are com
pared (Table 2), distinct difference between the two can be 
seen. 

For the rectangular-shaped orifice, there are flat edges, one 
at the top and the other at the two sides. But for the present 
class of geometries, there are no well defined edges; there is 
a continuous change in the geometry along the span-wise di
rection. Thus, the generation and growth of the shear layers 
in these two cases can be expected to be quite different. The 
extent to which both PC and CD regions exist should depend 
upon the growth of these shear layers along the flow direction. 
In the case of rectangular geometries, the PC region extends 
to a point where the shear layers from the top and the bottom 
meet and the CD region extends until the shear layers from 
the sides meet on the jet axis. It is not this mechanism which 
gives rise to PC and CD regions for the present class of ge
ometries. Both these regions are generated due to a continuous 
interaction of the boundary layer with shear layers from all 
along the edges of the orifice. It is difficult to see clearly the 
reason for the nonexistence of a well defined CD region for 
the geometry with h/d = 0.23. Though a curve has been fitted 
in the CD region for the maximum velocity decay in the case 

of h/d= 0.23 the value of the exponent for Um decay is nearly 
equal to 1 and the CD region is not well defined. 

In general, it can be expected that the influence of geometry 
will be much stronger in the case of orifices which have well 
defined edges because the shear layers from the sides (as ex
plained earlier) merge along the centerline at different stream-
wise distances, whereas for the curved geometries the shear 
layers grow all along the contour at the same rate and converge 
at nearly the same location along the streamwise direction. 

In the light of the above explanation, the length of the CD 
region can be expected to vary considerably with the change 
in the eccentricity (e) of a rectangular orifice (Table 2) whereas 
the length of the CD region can be expected to be more or less 
the same for the class of geometries where there is a continuous 
change of contour (e.g., circular, semi-circular, elliptical, etc.). 
This is borne out when the present results and those of Sforza 
and Herbst are compared. The exponent of Um decay in the 
CD region (though distinctly different from that of the values 
of radial decay) is comparatively much closer to the exponent 
in the RD region for the present class of geometries than those 
for the rectangular orifices. Considering the length of the CD 
region for the present class of geometries (except for h/ 
d= 0.23), the length of the CD region extends between x/h = 10 
to 20 whereas this length varies considerably for the rectangular 
geometries as can be seen from the Table 2. 

Another length scale parameter which could be considered 
instead of "h" is the square root of the area of various orifices. 
The variation of U/Um when \[A is used as the length scale 
is shown in Fig. 9. This figure shows that the radial decay 
region starts from x/\[A —35 irrespective of the geometry. In 
this respect -\[A is a better scaling parameter than h. But the 
characteristics of individual orifices are masked. Geometry 
does influence the maximum velocity decay rates and the spread 
rates especially close to the exit of the orifice, trends which 
are not brought out when \I~A is utilized. 
• For all the geometries tested in the present investigation, the 
decay-rate exponents of the maximum velocity in the RD region 
are shown in Table 2. In general, the exponents for the Um 
decay in the RD region in the present study conform with those 
of earlier investigators. 

3.2 Mean Velocity Profiles. In the present investigation, 
mean velocity profiles along the jet axis in the plane of sym
metry (z = 0) have been measured up to x/h = 100 for h/d= 1.0 
and 0.8 and up to x/h = 120 for h/d =0.5 and 0.23, respectively. 
For all the geometries the mean velocity profiles have also been 
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Fig. 10 Similarity of mean velocity profiles of the wall jet in the RD 
region for h/d= 0.8 (uncertainty in U = ± 2 percent in average; uncertainty 
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10) 
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Fig. 12 Similarity of the spanwise velocity profiles at y = ym in the RD 
region of wall jet for h/d=0.8 (uncertainty in U= ±2 percent in average; 
uncertainty in z=0.5 mm). For further information see the caption of 
Fig. 11. 

measured in the spanwise direction, at a distance y=ym from 
the wall, where the maximum velocity occurs. Only typical 
results for h/d =0.8 are presented and discussed. 

The velocity profiles in the RD region shown in Fig. 10 
exhibit similarity (same was the case with other geometries). 
Glauert's profile for the radial well jet (a = 1.3) is included for 
comparison. The agreement is very satisfactory. In Fig. 11 the 
velocity profile in the outer region is given and Fig. 12 shows 
the normalized spanwise velocity profile in the RD region. 
Similarity of the velocity profiles is observed in both figures. 
The profiles are compared with the exponential profile sug
gested by Newman et al. (1972) and Schlichting's axisymmetric 
(1968) free-jet solution. In general, it is seen that for the present 
class of geometries, the free-jet solution agrees better with the 
experimental data, whereas poor agreement is observed with 
the exponential profile. 

3.3 Variation of Length Scales. The longitudinal varia
tion of the length scales ym, ym/2, k and zmn are shown in Figs. 
13(a) and 13(£>). They have been normalized with h, e.g., 
ym = (ym/h). The corresponding spread rates in the RD region 
in both y and z directions are given in Table 3. The tabulated 
values show that in general a larger spread in z-direction com
pared to ^-direction is a common feature for all the three-
dimensional wall jets studied. Some of the earlier results rel
evant to the present investigation are included in Table 3. 

Comparing the growth rates normal to the plate for all the 
h/d ratios in the present investigation, they are found to be 
nearly the same at sufficiently large distances downstream (Ta
ble 3). When a comparison is made between the spanwise 
spread rates for this class of geometries with those of rectan-
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Table 3 Growth rates in the RD region and location of virtual origins for turbulent free jets and wall jets 
Virtual origin Virtual origin 
based on y,„n based on z,„n 

(x0/h) (x0/h) Type of jet Authors Date h/d e dymn/dx dl0/dx dz,„n/dx dzmn/dx dymn/dx 

1 10 11 

Three-dimensional 
wall 

" 
" 
" 
" 
" 

" 

Three-dimensional 
wall jet 

Two-dimensional 
wall jet 

" 
Free jet 

" 
" 

Present data 

" 
" 

(x/h<AG) 
(x/h>AG). 
Newman et al. 
Rajaratnam and 
Pani 
Davis et al. 
Swamy and 
Bandyopadhyay 
Sforza and 
Herbst 
Sforza and 
Herbst 
Sforza and 
Herbst 
Schwarz and 
Cosart 
Sigalla 
Wygnanski and 
Fiedler 
Pani and Dash 
Present data 

1972 
1974 

1980 
1975 

1970 

1970 

1961 

1958 
1969 

1983 

1.00 

0.80 
0.50 
0.23 
0.23 
1.00 
1.00 

1.00 
0.50 

— 

— 

— 

— 

— 
— 

— 
— 

— 

— 
. — 
— 
— 
— 
— 

— 
— 

0.10 

0.05 

0.025 

— 

— 
— 

— 
— 

0.045 

0.043 
0.049 
0.067 
0.040 
0.050 
0.045 

0.037 
0.046 

~^~ 
0.068 

0.065 
0.083 

0.098 
0.091 

0.040 

0.038 
0.042 
0.064 
0.034 
0.042 

— 

— 
0.042 

— 

— 

— 

— 

— 
— 

— 
— 

0.216 

0.215 
0.245 
0.150 
0.250 
0.278 
0.210 

0.320 
0.166 

0.140' 

0.100' 

0.100' 

— 

— 
0.083 

0.098 
0.091 

4.80 

5.00 
5.00 
2.25 
6.25 
5.56 
4.80 

8.60 
3.60 

1.00 

1.00 
1.00 

19.5 

0.00 

1.00 
1.00 

+ 12.0 

18.5 
17.5 
20.5 
65.0 
19.0 
19.6 

19.0 
17.5 

+ 8.5 
+ 8.0 
+ 3.5 

+ 17.0 
+ 17.0 
+ 11.0 

+ 7.0 

0.0 

1.0 
1.0 

* Approximate values calculated from the data available. 

12 h/d = 0.23 

° zm/2 
•10 a y m / 2 

(b) 

Fig. 13 Variation of length scales and location of virtual origins (a) hi 
d= 0.8, (b\pld= 0.23 (uncertainty x = 0.5 mm; uncertainty in y and z = 0.5 
mm), x , ym; v, 70; A 

gular geometries investigated by Sforza and Herbst (given in 
Table 3), the present class of geometries exhibit in general 
higher growth rates. Further, the span wise spread starts in the 
CD region itself (as seen from Figs. 13(a) and 13(Z>)), whereas 
in the case of rectangular geometries, the flow does not show 

any tendency to spread in the spanwise direction within the 
CD region. This has considerable practical implications. The 
large maximum-velocity decay rates close to the orifice exit 
observed for the present class of geometries (section 3.1) can 
also be attributed to this lateral spread of the flow in the CD 
region itself. 

3.3.1 Virtual Origins. Figure 13(a) shows the two virtual 
origins for h/d =0.8. The values given in Table 3 for h/d= 1.0 
and 0.5 in the present investigation agree with the earlier results 
for the corresponding geometries. It is interesting to see that 
the geometry with h/d =0.23 (for x/h<40) has the virtual 
origin based on zOT/2 growth quite close to the exit of the orifice 
( + 3.5) but for x/h>40 it is located very much downstream 
(+ 17) compared to other geometries (h/d= 1.0, 0.8, and 0.5). 
Further, for x/h > 40 the virtual origin based on ym/2 growth 
is located very much upstream (x/h = - 65) of the exit of the 
orifice. It is difficult to give the exact reasons why two virtual 
origins exist for h/d =0.23. These experiments were repeated 
and it was determined that this effect was not due to any 
experimental errors, rather the observation can be attributed 
to the differences in the geometry. 

The virtual origin indicates the location of the origin of the 
spread of the wall jet. As far as the virtual origin based on 
the growth rate in the normal direction is concerned, it is the 
same for the various geometries (excluding h/d=0.23 for x/ 
h>40). The virtual origin based on zmn growth is located 
downstream of the orifice indicating that the spread in the 
spanwise direction starts much later than the spread normal 
to the plate. 

Similar to Fig. 8 for maximum velocity decay, results were 
obtained for the length scale variation using \/A as the nor
malizing parameter and are shown in Figs. 14(a) and 14(6). 
From Figs. 14(a) and 14(b) it appears that the virtual origins 
for the geometries including h/d =0.23 are the same although 
a closer examination reveals two slopes in the plot of the 
experimental points for h/d=0.23. This trend is not as clear 
as in Fig. 13(6) and the details are masked when *J~A is used 
as the scaling parameter. 

3.4 Skin-friction Estimation. The skin-friction for a wall 
jet is normally expressed by its coefficient cyand is defined as 
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Table 2 Wall-law constants for three-dimensional wall jets 
Authors h/d 

Present 
n 
" 
" 

Gowda 
Swamy and 

Bandyopadhyay 

1.00 
0.80 
0.50 
0.23 
0.50 
0.50 

5.60 
4.00 
4.00 
4.42 
5.60 
4.10 

5.0 
10.0 
9.2 
9.0 
5.5 
9.1 

Fig. 14(a) Variation of length scales normal to the wall (with the square 
root of the area of the orifice as parameter) (uncertainty in x = 0.S mm; 
uncertainty in y=0.5 mm). For further information see the caption of 
Fig. 14(p). 

z m / 2 

G 12.0 

-

-

-

h /d 

o 1.0 

a 0 . 8 

x 0 .5 

" 0 .23 

*>7\ \ 

yd 

(b) 

Jy 

I I I 
60 80 

x/<£ 

Fig. 14(b) Variation of length scales parallel to the wall (with the square 
root of the area of the orifice as parameter) (uncertainty in x = 0.5 mm; 
uncertainty in z=0.5 mm). 

cf=T0/(\/2PU2
m) (2) 

where To is the shear stress at the wall. 
Skin-friction measurements in three-dimensional wall jets 

are relatively few. Pani and Dash (1983) and Rajaratnam and 
Pani (1974), Swamy and Gowda (1974) and Swamy and Ban
dyopadhyay (1975) are the four investigators who have given 
cf values for three-dimensional wall jets. 

The skin-friction in the present investigation was estimated 
using Clauser's technique (1954) from the mean velocity pro
files measured along the jet axis in the plane of symmetry. 
The values of A and B obtained in the form U+ =A \ogy+ + B 
are shown in Table 4. The values of A and B for h/d= 1.0 are 
surprisingly the same as those obtained for turbulent boundary 
layers. No other results for this geometry are available for 
comparison purposes. It is pertinent to mention that the value 
of the power law exponent obtained for h/d= 1.0 is 8 (details 
not reported here) which is quite close to the value for a tur
bulent boundary layer (7). For the other h/d ratios, A and B 
obtained are quite close to those typically observed for wall 
jets. 

The variation in cf along the centerline is shown in Fig. 15. 

Symbol 

o 
a 
X 

V 

Station 
h/d 
1.0 
0.8 
0.5 
0.23 

>?**£ <# * * » Atf 

Fig. 15 Centerline skin-friction distribution for all h/d ratios (uncertainty 
in c,= ±0.0005; uncertainty in x = 0.5 mm). For further information see 
the caption of Fig. 14(6). 

2 x i o ' 
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„3 " 
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O 1.0 
a 0.8 
x 0.5 
v 0.23 

*Jsâ _ A< 

4 2 •> i ' ft q *i 

Fig. 16 Skin-friction distribution in the wall jet in the plane of symmetry 
for all ft/d ratios (uncertainty in c, as in Fig. 15). o,h/d=1.0; &,/?/d=0.8; 
x , h/d = 0.5; v, /?/d=0.23; present data, Re„=9.64x 10". A, Gowda's 

data, Re„= 7.8x10" (1974): a, Bandyopadhyay's data, Red = 7.8x10" 
(1975); —, Mathieu and Tailland (1963); , Bradshaw and Gee (1962); 

, Sigalla (1958). 

This figure shows a slight drop in Cj especially in the potential 
core region and thereafter a slight increase is observed. The 
rapid growth of the wall jet region is reflected in the reduction 
of Cf and subsequent gradual increase in Cj is associated with 
slow increase in ym. cf approaches a constant value of 0.0064 
at large distances downstream from the orifice exit irrespective 
of the orifice geometry tested. 

The variation of c/ with Reynolds number can be expressed 
as a power law: 

cf=K(Reymy (3) 
where K= the constant of proportionality and Re^m = (U„ym/ 
v). Such variations are plotted in Fig. 16. The values of C/in 
the present case are enclosed between the results for the two-
dimensional wall jets. 

4 Concluding Remarks 
The results presented in this part on a class of three-dimen

sional wall jets have shown the differences in the mean velocity 
field between circular and rectangular geometries. The mech
anism of generation of the CD region is different for these 
two classes of geometries. The circular geometries exhibit higher 
jet spread rates than those of the rectangular orifices and this 
may have considerable advantage in many practical applica
tions. 

The mean velocity profiles appear to be relatively unaffected 
by the orifice geometries and attain similarity at distances not 
far from the jet exit. The skin-friction coefficient approaches 
a constant value at large distances downstream irrespective of 
the orifice geometry. 
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Mean and Turbulence 
Characteristics of a Class of 
Three-Dimensional Wall Jets—Part 
2: Turbulence Characteristics 
The mean flow characteristics of three-dimensional, incompressible, isothermal tur
bulent wall jets generated from orifices having the shapes of various segments of a 
circle are presented in Part 1 of this paper. In this part, the turbulence characteristics 
are presented. Turbulence quantities measured include normal stresses and Reynolds 
shear stresses in the characteristic-decay and in the radial-decay regions of the wall 
jets investigated. These results are compared with those available for two-dimensional 
and three-dimensional wall jets. The presence of counter-gradient regions and the 
feature of "energy reveral" are discussed. 

1 Introduction 
Wall jets are generated when a jet of fluid strikes a surface 

at an angle. When the angle is 90 deg, a radial wall jet is 
formed and when this angle is tangential to the surface, a plane 
wall jet is generated. When the aspect ratio of the orifice from 
which the jet issues is finite, the wall jet becomes three-di
mensional. Three-dimensional wall jets generated by using dif
ferent orifice geometries (such as rectangular, square, circular, 
semi-circular, and elliptic geometries) have been studied. A 
summary of these investigations is listed in Table 1. All the 
orifice (or nozzle) geometries employed are given as defined 
by the respective investigators. Other quantities measured are 
also listed in this table. 

The investigations of Sforza and Herbst (1970) dealt with 
properties of wall jets generated by orifices having rectangular 
geometries with flat sides. In the present study another class 
of geometries having the shape of various segments of a circle 
have been utilized to generate the wall jets. Here, the nozzle 
shape across the cross-section changes continuously when com
pared to rectangular nozzles. The mean flow characteristics of 
wall jets generated from this class of geometries are presented 
and discussed in Part 1 of the paper. The turbulence charac
teristics are presented and discussed in this part. It should be 
mentioned that comparatively less information is available on 
the turbulence characteristics of three-dimensional wall jets 
(Newman et al., 1972; Swamy and Bandyopadhyay, 1975; Davis 
and Winarto, 1980; and Torukoso and Ohashi, 1982). The 
present results are compared with published results for both 
two-dimensional and three-dimensional wall jets. 

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
April 25, 1991. 

2 Experimental Arrangement 
The experimental facility is the same as that utilized for the 

mean flow measurements. 
Turbulence measurements in the wall jets were performed 

using a DISA 55D01 anemometer (constant temperature mode) 
and a DISA 55D15 lineariser. A normal-wire probe (DISA 
55A22) was mainly used to measure the stream wise turbulence 
intensity u. Transverse turbulence intensity v and Reynolds 
shear stress Hv were measured using an inclined-wire probe 
(DISA 55P12). These probes were made of platinum-plated 
tungsten wire of 5 /xm diameter and had an active length of 
1.2 mm. The d-c and a-c components of the linearized output 
signals were measured with DISA 55D31 Digital d-c and DISA 
55D35 rms volt-meters, respectively. The linearizations were 
carried out in two velocity ranges: (i) 80 m/s to 20 m/s and 
(ii) 16 m/s to 4 m/s. This procedure oflinearization was adopted 
for both the normal and inclined-wire measurements. The hot 
wire probes were calibrated with the help of DISA 55D90 
calibration equipment. Calibration was done after every run 
of approximately 4 hours. An integration time of 60 seconds 
was found to be adequate for both the normal and inclined-
wire measurements. The probes were introduced with their 
prongs parallel to the main flow direction (x-axis) and their 
calibration was also performed in the same configuration. While 
taking measurements close to the wall, the probes were kept 
with their axes at a pitch angle of 3 to 5 deg to the wall 
depending on the location of measurement station along the 
x-axis. This inclined operation of the wire was extended up to 
a distance of 10 mm from the wall (normal to the plate). Beyond 
this, the wires were not pitched and they were operated in the 
normal position (with prongs parallel to main flow direction). 
The technique due to Vagt (1979) is used to evaluate the tur
bulence quantities v and uv. The detailed description of the 
measurement technique adopted, alignment procedures, cali
bration, etc. is given in Padmanabham (1986). 
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Fig. 1 Distribution of longitudinal turbulence intensity u across wall 
jet in the plane of symmetry for hld= 0.8. a,x//j = 10; H,X//? = 15; V , xl 
h = 20;X,xlh = 32; + ,x /h = 40; o,xlh = 50; a,xlh = 60; Y , X / 7 I = 8 O ; 0 , 
x/h =100. , mean data due to Irwin (1973) for two-dimensional wall 
jet (uncertainty in 0IUm= ±10 percent in average; uncertainty in y = 0.5 
mm). 

3.6 

3.2 

( ™ 

2D W.J(Guitton; 1970) 
Free jeUWygnanski & 

A Fiedler; 1969) 
&\^ A A Free jet (Present data) 
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Fig. 2 Distribution of longitudinal turbulence intensity u in the outer 
region of the wall jet in the plane of symmetry for hid = 0.8. (Uncertainty 
is same as in Fig. 1.) ±, free jet data (19.1 mm dia) at x/d=20; — , 
mean curve from Guitton's data for two-dimensional wall jet (1970); 

, mean curve from free jet due to Wygnanski and Fiedler (1969). For 
further information see the caption of Fig. 1. 

No correction has been applied for turbulence intensities. 
In the present investigation the maximum turbulence levels 
recorded were approximately 35 percent. To apply corrections 
for these turbulence levels, higher order correlations are re
quired which unfortunately were not obtained. For turbulence 
intensities of the order of 20 percent, a correction of the order 
of 5 percent is necessary (Irwin, 1973). Based on the care and 
repeatability checks, the uncertainty levels in the turbulence 
measurements could be taken at ±10 percent in the present 
investigation. The uncertainty levels are also indicated in each 
of the figures. 

The turbulence measurements for each h/d ratio, (definition 
sketch given in Part 1) were carried out at a jet exit velocity 
of 80 m/s, and an exit Reynolds number (Red) of 9.54 X 104, 
the same condition as for the mean flow measurements. 

Present data h/d 
free jet v 
Wall jet A 1.0 

x 0 .8 
o 0.5 
<7 0.23 

Swamy etat (1975) + 0.5 
Torukosoetal (1982) ° 0 . 5 
Davis etal (I960) e 1.0 

40 50 60 70 60 90 
x/d for free jet , x /h for wall jet 

Fig. 3 Axial variation of longitudinal turbulence intensity at maximum 
velocity points. (Uncertainty in x = 0.5 mm; uncertainty in QIUm= ±10 
percent in average.) — , mean curve of axisymmetric free jet due to 
Wygnanski and Fiedler (1969). 

3 Results and Discussion 
The turbulence quantities discussed in the following section 

were obtained for all the geometries tested. As in Part 1, only 
the results for h/d =0.8 are shown. 

3.1 Normal Stresses 

3.1.1 Variation of u in the Plane of Symmetry. The dis-. 
tribution of longitudinal turbulence u in the plane of symmetry 
at various stations along the jet axis and across the wall jet is 
shown in Fig. 1. The length and velocity scales are ym/2 and 
U„„ respectively. 

Referring to the figure it is observed that at the lower values 
of x/h (<30), the influence of the orifice geometry is still 
evident. This corresponds to CD region. Here, the turbulence 
parameters are still undergoing some changes. This region could 
thus be called an "evolutionary region." It is usual to compare 
the longitudinal turbulence intensity u for a two-dimensional 
wall jet with the turbulence levels observed in this evolutionary 
region of the three-dimensional wall jet. In Fig. 1, the mean 
curve drawn through the experimental points of the data of 
Irwin (1973), for a two-dimensional wall jet is shown by a 
solid line. The profiles of u/Um for h/d=0.8 and all the other 
cases tested show the same trend as that of Irwin's data, even 
though the turbulence levels observed are different. Further, 
u/Um exhibits self-similarity from x/h = 60 onwards, which 
was also the case for other geometries. 

The distribution of longitudinal turbulence intensity u in the 
outer region of the wall jet is shown in Fig. 2. The mean curve 

Nomenclature 

A = 

E = 

EL = 

f = 
G = 

k = 

cross-sectional area of a seg
ment of a circle 
instantaneous voltage of hot- / 
wire probe for nonlinearized /0 

operation Red 

d-c voltage of hot-wire probe 
for nonlinearized operation S 
instantaneous voltage for line
arized operation u 
d-c voltage for linearized oper
ation v 
frequency 
directional sensitivity coeffi- uv 
cient of the hot-wire x 
directional sensitivity coeffi

cient of hot wire or wave num
ber 
length of hot wire probe 
(ym/2-ym) 
jet exit Reynolds number 
(=Ujd/v); dimensionless 
calibration or sensitivity factor 
for linearized operation 
rms of velocity of fluctuations 
in x-direction 
rms of velocity of fluctuations 
in j-direction 
Reynolds shear stress 
streamwise or longitudinal dis
tance along the jet axis 

y = transverse direction (normal to 
the plate) 

ym = value of y where U= Um 

z = spanwise direction (parallel to 
the plate) 

•K = rate of production of turbulent 
kinetic energy or 3.14159 

Subscript 

(-) = indicates normalization with 
/(•(e.g., x=x/h) 

CD = characteristic decay 
DC = direct current 
PC = potential core 
RD = radial decay 
rms = root mean square 
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Table 1 Three-dimensional wall jet experimental studies on plane surface in stagnant surroundings 

SI. 
no. 

1 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Author(s) 
and year 

2 

Sforza 
and 

Herbst 
(1970) 

Newman, 
Patel, 
Savage, 
and Tjio 

(1972) 

Gowda, 
B. H. L. 

(1973) 

Bandyopadhyay, 
P. (1974) 

Rajratnam 
and Pani 

(1974) 

Hofer 
(1979) 

Davis and 
Winarto 

(1980) 

Torukoso 
and Hideo 

Ohashi 
(1982) 

Pani and 
Dash 
(1983) 

Shape o 
nozzle/ 
orifice 

3 

T 

1 

l -b -K 

' 

Ed 

b 

b 

1 
b 
i_ 

i 
r 
b 
A. 

J. 

a 
k - b - r 

B ^ 

i 

B -4; 

ro 

ft| 

E 
r 

I-

3 
| 

-»J 

f Slot 
dimensions 

(cm) 

4 

« x 6 = .0645 
cm2 

b/a = e = 0.025 

0.050 

0.100 

1.000 

0.3175 

0.2 

e = 1 . 0 
(r/b= 1.0) 

6=10 .0 

( r /6 = 0.5) 

6 = 5.7 

(/76 = 0.5) 

0.95 
(e=1.0) 

0.98 
(e=1.0) 

B=1 .44 
6=1.27 
( e = l . l ) 

B=1.45 
6 = 0.95 
(e=1.5) 

B = 1 . 5 
6 = 0.9 

(e = 0.667) 

0.5-0.75 
( r /6=1 .0) 

6 = 2.54 

A/6 = 0.5 

1.0 

2.0 

4.0 

6eq = 3.49 

6 = 5.0 
r = 2.S 

1.270 

0.635 

r= 0.635 
6 = 0.953 

103-Re„ 

5 

10'C/o/o 

V 

16.4 

2.8 

118 

78 

65.0 

67.0 

86.0 

97.5 

59.5 

0.8-4.4 

170 

66.2* 

79.76 

39.88 

59.86 

Region of 
Measurement 

6 

x/b 

20-350 

15-220 

4-100 

1-10 

x/b 

20-200 

50-130 

x/r 

5-14 

x/r 

5-40 

x/b 

5-70 

5-70 

x/B 

4-43 

3-43 

3-43 

x/b 

5-60 

x/btq 

5-45 

x/b 

5-100 

6-80 

dlo 
dx 

7 

0.042 

0.046 

dy,„/i 

dx 

8 

non
linear 

0.050 

0.046 

0.045 

0.045 

0.042 

0.042 

0.040 

0.037 

0.036 

0.039 

0.046 

dZm/2 

dx 

9 

0.278 

0.166 

0.21 

0.265 

0.208 

0.205 

0.205 

0.32 

0.33 

0.29 

0.23 

dZmn 

dx 

dy,„n 
dx 

10 

5.56 

3.608 

4.67 

5.88 

4.90 

4.88 

5.20 

9.4 

9.8 

7.4 

5.0 

Virtual origin 
(x0/b) 

for 
y,„n 

11 

- 1 9 

- 1 7 . 5 

- 1 9 . 6 

- 1 9 . 6 

- 1 9 . 8 

- 1 9 . 5 

- 2 0 . 0 

- 1 9 . 0 

- 2 1 . 0 

- 2 2 . 0 

- 2 5 . 5 

for 
Zm/2 

12 

+ 17 

+ 7 

+ 11 

+ 15 

+ 11 

+ 11 

+ 11 

Turbulence 
measurements 

taken 

13 

u measure
ments up to 

175 slot 
diameters 

u component 
measured in 

the inner 
layer at 
x/r = 6 

u up to 
x/r = 40 

0 and w at 
x/r = 34, 36 

and 38 
uv at x/r =36 

and 38 

u measured 
up to 

x/b = 32 
for all h/b 

ratios 
v, w, W 
and «w 

measured at 
x /6 = 32 for 

h/b = 0.5 
only 

u up to 
x / 6 „ = 20 
v and w at 
A-/6eq=10 

only 
TW and uw 

a t x / 6 e q = 20 
only 

Streamwise 
variation 

ofUm 

14 

CD region 

x~04' 
x~0A2 

x-016 

RD region 
for all 

values of e 

RD region 

CD region 
x-o.» 

CD region 
x-°-6'6 

RD region 

RD region 
x-'° 

RD region 
„-(l.27±0.02) 

RD region 
x-'° 
for all 

geometries 

Notes: 1. e = height of orifice/width of orifice 
2. 'Reynolds number based on equivalent diameter 6e, 
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(a) x/h =15 

CD. Region 

Symbol h/d 
a 1.0 
o 0.8 
x 0.5 
v 0.23 

** * , 

0.4 0.6 1.2 1.6 2.0 2.4 

V/V m /2 

(b) 

i 

x/h =32 

i 

R.D. Region 

"6*4 05 O i ^ 2 3 2~4 

y / y m / 2 

( c ) x / h = 60 R. D. Region 

<*$ * 

I 
0.4 1.2 1.6 

y / y m / 2 

~~0~ 

Fig. 4 Influence of orifice geometry (hid) on longitudinal turbulence 
intensity u (a) in CD region (*//) = 15); (6) in RD region (xlh = 32); (c) in 
RD region (x//) = 60). (Uncertainty iny=0.5 mm; uncertainty irii IUm= ±10 
percent in average.) A , hld= 1.0; o, hld= 0.8; X, Wd= 0.5; v, hld= 0.23. 

h/d = 0.E 

- - Free jet (Wygnanski & Fiedler; 1969) 

Fig. 5 Spanwise distribution, at the distance y„, from the wall, of lon
gitudinal turbulence intensity 0 in the wall jet for hid = 0.8 (uncertainty 
in z=0.5 mm, uncertainty in 0IUm is ±10 percent in average). For further 
information see caption of Fig. 1. , mean curve free jet due to Wyg
nanski and Fiedler (1969). 

through the experimental data due to Guitton (1970) for the 
two-dimensional wall jet issuing into still air is also included 
for comparison purposes (shown by a solid line). The shape 
of the profiles for all the other geometries tested is the same 
as that of Guitton, but the magnitudes of u turbulence are 
much higher. This is attributed to the lateral stretching of the 
eddies in three-dimensional wall jets (Newman et al., 1972). 
The mean curve drawn through the experimental points of 
Wygnanski and Fielder (1969) for a free jet obtained at large 
distances from the jet exit shows poor agreement with present 
results. However, when a similar comparison for the mean 
velocity profiles is made, it showed reasonably good agreement 
between the results for the outer region of the wall jet and free 
jet as mentioned in section 3.2, Part 1. It appears that the 
turbulence levels in the outer region are affected by the presence 
of the wall. 

h/d =0.8 

x /h 

A 15 
O 32 
a 60 

Irwin's data(1973) 
for 2D Wall jet 

, a a a0
Do o 8 qS • „ o°° " A A i»°« q n J 

~ A - O 
•%-D, 

y/ym/2 

Fig. 6 Variation of 9 turbulence across wall jet in the plane of symmetry 
for hld= 0.8 (uncertainty in y = 0.5 mm; uncertainty in vlU„, = ±10 percent 
in average), A , xlh = 15; o, xlh = 32; • , xlh = 60; — -, mean data due to 
Irwin for two-dimensional wall jet (1973). 

Present data h/d 
Wall jet A 1.0 

x 0.8 
o 0.5 
v 0.23 

h/d 
Swamy etal (1975) + 0.5 
Torukosoetal (1982) a 0.5 
Davis etal (I960) 8 1.0 

50 60 70 60 

x/d for free jet , x/h for wall jet 

Fig. 7 Axial variation of 9 turbulence at maximum velocity points (un
certainty in x = 0.5 mm, uncertainty in vlU„,= ±10 percent in average). 
— , mean curve of free jet due to Wygnanski and Fiedler (1969); — , 
mean curve of two-dimensional free jet due to Gutmark and Wygnanski 
(1976). 

In Fig. 3 the variation of longitudial turbulence intensity 
u/Um along the axial direction measured at y=ym is presented. 
The levels of u/U,„ attained here in both wall jets and a free 
jet are comparable to those observed by earlier investigators. 
The results tend to flatten at x/fc = 60 thereby indicating a 
tendency for similarity from this axial distance downstream. 
As stated earlier, a state of self-similarity of u/Um has been 
observed at x/h = 60 and beyond for all the three-dimensional 
wall jets investigated. 

In order to bring out more clearly the effect of orifice ge
ometry (h/d) on the longitudinal turbulence intensity u along 
the jet axis, the distributions of u/Um across the wall jet both 
in the CD region (x/h = 15) and RD region (x/h = 32 and 60) 
have been compared. These are shown in Fig. 4(a) for the CD 
region and Figs. 4(b) and (c) for the RD region. The differences 
in the turbulence levels for the various geometries decrease 
with the distance from the orifice exit. As (x/h) increases, the 
lateral distance across which (u/Um) remains constant in
creases. The overall levels of (u/U,„) also appear to be constant 
for the larger x/h values. It is interesting to see that geometry 
has a distinctive influence not only on the mean velocities but 
also on the turbulence levels. Beyond x//! = 60, the variation 
of u/Um for all the shapes can be expected to be negligible as 
self-similarity in u/Um is achieved. 

3.1.2 Spanwise Variation of Longitudinal Turbulence 
u. The distribution of u in the spanwise direction at y-ym 
from the wall are shown in Fig. 5. The length and velocity 
scales chosen are zm/i and U,„, respectively. The profiles of 
u/U,„ exhibit similarity from x/h = 60 onwards. The mean curve 
as given by Wygnanski and Fielder (1969) for a free jet is 
shown for comparison. 
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Fig. 8 Shear stress variation across wall jet in the plane of symmetry 
for hld=0.B (uncertainty in y=0.5 mm; uncertainty in uvlV%= ±10 per
cent in average). — , mean curve of two-dimensional wall jet due to 
Wilson and Goldstein (1976) 

B 
A^f—" 

C 

U 

I 

~ ~ ^ E 

(a) 

Fig. 9(a,b) Properties of three-dimensional wall jets for h/d = 0.8 at xl 
/i = 60 

It is observed that there is poor agreement between the tur
bulence («) data for a free jet and that for the outer layer of 
wall jets measured in x-y plane (section 3.1.1). However, there 
is good agreement when the spanwise distributions are con
sidered. This was also the case regarding the mean velocities 
in the spanwise direction (section 3.2; Part 1). It appears as 
through the flow history has a lesser influence in the spanwise 
direction than in the longitudinal direction. 

3.1.3 Variation of Transverse Turbulence Intensity v. The 
normalized distributions of v turbulence intensity across the 
wall jet at x/h = 15, 32, and 60 for h/d =0.8 are shown in Fig. 
6. In this figure the mean curve drawn through the experimental 
points of Irwin's data (two-dimensional wall jet) is also shown. 
The trend of the curves is the same in both cases. When the 
magnitudes of v turbulence are compared with those of u (Fig. 
1), the former are found to be smaller. The maximum of v/ 

en 

Fig. 10 Distribution of rate of turbulent kinetic energy production terms 
across wall jet in the plane of symmetry at x/h = 60 for hid = 0.8 

tf/7 

. 

X 

* o ° 
* o » » 

«oo" 

o \ 
x&v 0.2 0.4 

3 

h/d 
a 1.0 
o 0.8 
* 0.5 
7 0.23 

4 » 8 

, 
0.6 

A 

0.8 

x/h =60 

o " I "M $ 

1.0 1.2 

111 m/2 

a? 

p 
1.4 

7 

o 

1.6 

o Oe. 

, 
1.8 

Fig. 11 Distribution of correlation coefficient at x/h = 60 for all (hid) 

ratios (uncertainty in y=0.5 mm; uncertainty in UvK/u2. -\/v2 is ±10 

percent in average) 

U,„ occurs around y/ymn = 0.8. This was also the case with the 
other geometries. 

The v turbulence intensity obtained at maximum velocity 
points is shown in Fig. 7. The values of v/Um obtained agree 
with those of earlier investigators and the level of turbulence 
intensity is similar to that of a free jet. 

3.2 Variation of Turbulent Shear Stress. The normalized 
distributions of uv at x/h = \5, 32, and 60 for h/d =0.8 are 
shown in Fig. 8. The mean curve through Wilson and Gold
stein's (1976) data for a plane wall jet is also included. 

The most important feature noticed here is that the point 
of zero shear stress does not coincide with the point of max
imum velocity. The point of zero shear stress is around y/ 
>>m/2 = 0.13 on the average for all the geometries tested, which 
is a typical value generally observed for both two-dimensional 
and three-dimensional wall jets. This feature is further dis
cussed by choosing a typical case from the present results. 

In Fig. 9(a) the mean velocity profile for h/d=0.8 at x/ 
/? = 60 is shown (the curve plotted is an average curve through 
the experimental points). The positions of some typical points 
A, B, C, D, and E are considered. In Fig. 9(fc) the variation 
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of turbulent shear stress uv/ Um
2 and the velocity gradients 3 U/ 

dy across the width of the wall jet are shown. The correspond
ing points A, B, C, D, E and A', B' , C , D' , E' are also 
shown in this figure. In the region AB-A' B', d U/dy is positive 
and Tw is negative, causing the product Tw. dU/dy to be neg
ative. In the region CDE-C'D'E', m is positive but dU/dy is 
negative and again the product is negative. But in the region 
BC-B'C, dU/dy is positive and Tw is also positive i.e., the 
quantity uv is counter-gradient, with the result that the product 
(uv. dU/dy) is positive. This means that in this region, as far 
as this production term is concerned, it is positive for the mean 
velocity field and negative as far as the turbulence energy 
balance is concerned. This observation implies that turbulence 
feeds the mean field in this region, i.e., there is energy reversal 
in the region BC-B' C'. This is a typical feature of an asym
metric velocity profile and both Palmer and Keffer (1972) and 
Eskinazi and Erian (1969) have argued that there might be a 
transfer of kinetic energy from the turbulence to the mean 
flow. However, one has to be cautious to categorically come 
to this conclusion because turbulence production is comprised 
of other quantities in addition to the product (uv. dU/dy). 

Considering all the production terms, the rate of turbulent 
kinetic energy 7r can be expressed as: 

,~2 -Zv SU — fdU dV\ ,= - p ( ? - 7 ) . - - p M B ^ - + - j (1) 

The axial gradient of V is usually much smaller than that of 
U. Hence, Eq. (1) can be written as: 

In turbulent flows, bulk of the kinetic energy is supplied by 
the term ( — uv. dU/dy). The two terms in Eq. (2) have been 
estimated (for the case of h/d=0.S) and the combined results 
are shown in Fig. 10. As can be seen, most of the turbulent 
kinetic energy is supplied by the term (-uv. dU/dy). Though 
the production of turbulent kinetic energy due to work done 
by the rate of strain against the shear stress is negative over a 
substantial portion of the inner region, near the point of ve
locity maximum it is more than balanced by the contribution 
from the normal stresses. Hence, no region of negative pro
duction of turbulent kinetic energy exists in the flow field under 
investigation. The total production of the turbulent kinetic 
energy is positive over the entire width of the wall jet. 

Hence, the concept of energy reversal, i.e., the idea of the 
turbulence feeding the mean flow rather than the opposite is 
not valid for this flow. Further, as there are regions of counter 
gradients (i.e., regions where both dU/dy and uv have the same 
sign), the gradient-transport models are inadequate to predict 
such flows. 

3.2.1 Shear Correlation Coefficient. The shear correlation 
coefficient at x/h = 60 is shown in Fig. 11. Such results were 
also obtained at x/h = 15 and 32. The trends were the same as 
that shown in Fig. 11, but there was considerable scatter at 
locations close to the nozzle exit. This is expected in that the 
shear correlation coefficient is a structure parameter (indicates 
momentum exchange between u and v fluctuations) and tends 
to an asymptotic value only at large downstream distances. 

4 Concluding Remarks 
From the results presented in this part on the turbulence 

characteristics of a class of three-dimensional wall jets it is 
seen that just as the mean velocity profiles (Part 1), the tur
bulence profiles are relatively unaffected by the orifice ge
ometries. However, similarity for the turbulence quantities is 
achieved farther away from the jet exit compared to the mean 
flow quantities. Unfortunately turbulence data for the other 
class of geometries (e.g., rectangular) is not available and hence 
the comparisons with the present results were not possible. 
However, when the trends in the variation of turbulence levels 
for the various shapes measured in the present investigation 
are noted, the same order and trends for these quantities can 
be expected for other orifice geometries. 

Turbulence measurements in off-the-plane of symmetry and 
spectral measurements are desirable. 
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Experimental Investigation of a 
Turbulent Flow in the Vicinity of 
an Appendage Mounted on a Flat 
Plate 
Experimental measurements were carried out in an incompressible three-dimensional 
turbulent shear layer in the vicinity of an appendage mounted perpendicular to a 
flat plate. The thickness of the turbulent boundary layer as it approached the 
appendage leading edge was 76 mm or 1.07 times the maximum thickness of the 
appendage. As the oncoming boundary layer passed around the appendage, a strong 
secondary flow was formed which was dominated by a horseshoe root vortex. This 
secondary flow had a major effect in redistributing both the mean flow and tur
bulence quantities throughout the shear layer, and this effect persisted to a significant 
degree up to at least three chord lengths downstream of the appendage leading edge. 

1 Introduction 
Secondary or transverse flows are those which have mean 

flow components in a plane perpendicular to the main flow 
direction. Secondary flows can occur in both laminar and 
turbulent shear flows and in such diverse situations as the flow 
in ducts and the flow in junctures formed by bodies protruding 
from a wall. 

The secondary flow problem considered here is that of a 
turbulent boundary layer on a flat plate which encounters an 
appendage of finite chord protruding from the plate. When 
the turbulent boundary layer is developing on the flat plate, 
the vortex lines in the boundary layer are straight and aligned 
perpendicular to the main flow and parallel to the plate. When 
the flow goes around the appendage, these vortex lines are 
skewed and stretched due to the three-dimensional curvature 
of the streamlines. Thus, streamwise vorticity is produced in 
the juncture formed by the plate and the appendage. This is 
illustrated schematically in Fig. 1. 

Secondary flows caused by both skewing and blockage ef
fects arise in wind-fuselage junctures, turbine cascades, and 
in the hull-appendage juncture of ships and submarines. Since 
the secondary flow persists downstream, it can have an im
portant influence on the flow over aft fuselages and on the 
inflow to a ship's propulsive device. 

The flow of a three-dimensional boundary layer approaching 
an upright wall mounted circular cylinder has been experi
mentally investigated by Angui and Andreopoulos (1990). They 
found that a mean separation point of the oncoming boundary 
layer was located 0.76 and 0.82 diameter upstream of the 
cylinder on the plane of symmetry at Reynolds numbers 105 

and 2.2 x 105, respectively. A separation line which marked 

the horseshoe vortex, emerged from the mean separation point 
and wrapped the cylinder with a parabola like line. 

Experimental investigations of turbulent flow about a strut-
end wall configuration by Chang et al. (1990) showed that 
spanwise varying natural transition on the strut led to the 
formation of a secondary vortex which coexisted with 
horseshoe vortex generated by end wall flow separation up
stream of the strut leading edge. Both vortices were similar in 
strength downstream of the strut trailing edge, and both dis
torted the primary flow and local turbulence structure in the 
wake end wall region. They indicated that conventional eddy 
viscosity and k-e transport equation models are not wholly 
adequate for predicting the flow. 

Devenport and Simpson (1990) examined the turbulent flow 
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HORIZONTAL WIRE 

SLANT WIRE 

Fig. 2 Details of hot-wire geometries 

near the nose of a wing-body junction. They showed that flow 
in the plane of symmetry immediately upstream of a 3:2 el
liptical nose is characterized by large-scale, low-frequency un
steadiness. This unsteadiness is bimodal in nature, with 
streamwise mean velocities near the wall alternating between 
large negative values and near-zero values. A relatively weak, 
counter-rotating recirculation pattern exists near the wall up
stream of the primary recirculation pattern when the zero-flow 
mode is present. The time-dependent recirculation structures 
differ from those obtained by time-averaged measurements of 
Abid and Schmitt (1986) upstream of a semi-circular nose. 

The mean flow structure upstream, around, and in the junc
ture formed by a finite-chord appendage with a cylindrical 
leading edge has been studied experimentally by Pierce et al. 
(1985, 1987) and by Abid and Schmitt (1986). Rood (1984) 
examined the large-scale temporal flow around several ap
pendages with various elliptical leading edge geometries. Dick
inson (1986a and 1986b) performed flow visualization, pressure 
measurements on the flat plate, and three-dimensional mean 
and fluctuating velocity measurements for two appendage 
shapes at zero angle of attack with a turbulent incoming bound
ary layer. Dickinson (1986a and 1986b) concluded that the 
radius of curvature of the leading edge affected the strength 
of the secondary vortex flow. The vortex was close to the wall, 
on the order of the momentum thickness of the incoming 
boundary layer, and had a flattened shape. 

The numerical solution of the complete appendage flow 
problem is a very demanding task which has received attention 
only recently. The incompressible laminar flow case has been 
described numerically by Briley et al. (1984). There has been 
some success in predicting the development of turbulent flow 
in an appendage corner when starting downstream of the ap
pendage leading edge with experimental data used as a starting 
condition. A steady, incompressible three-dimensional Reyn

olds equation solver was applied to the problem of flow past 
an appendage mounted on a flat plate by Burke (1987). The 
results of his numerical calculations were compared with wind 
tunnel experiments of Dickinson (1986a and 1986b). The ob
served and predicted pressure distributions on the flat plate 
agreed well, but the lateral extent of the horseshoe vortex was 
over predicted compared to the experimental data. 

The primary aim of the experiments reported here was to 
carefully document the turbulent flow around an appendage 
with emphasis on the character of the flow downstream of the 
trailing edge. In addition, physical insights into the nature of 
the flow field were sought. Measurements were made in selected 
planes normal to the free stream as shown in Fig. 1. The data 
are intended to aid in formulating and evaluating numerical 
analyses of the turbulent appendage flow problem. 

2 Facilities, Instrumentation, and Technique 
The experiments were performed in an open return type wind 

tunnel with a test section of 6.1 m long and 1.07 X 1.09 m in 
cross-section. The wind tunnel free-stream turbulence intensity 
was measured to be 0.5 percent. 

The appendage was a modified NACA 0020 airfoil. The 
standard airfoil was fitted with a 1.5:1 elliptical leading edge 
matched at the point of maximum thickness. The aft portion 
of the appendage was approximated by a straight line from 
the 0.86 chord location to the trailing edge, resulting in a 
trailing edge semi-vertex angle of 11.5 degrees. The appendage 
had a chord of 30.9 cm and a maximum thickness of 7.1 cm. 
The span of the appendage was 69.5 cm to ensure the two 
dimensionality of the appendage. The appendage was fitted 
with static pressure taps arranged in both a chordwise and 
span wise pattern. Some taps were located symmetrically on 
either side of the appendage and were used to align the ap
pendage with the free-stream. The appendage was fitted with 
a boundary layer trip wire 0.46 mm in diameter located at 8.2 
percent chord. 

The two-dimensional boundary layer was generated on a flat 
plate which was supported 30 cm above the wind tunnel floor. 
The flat plate spanned the wind tunnel. The plate leading edge 
was located 2.8 m upstream of the exit of the test section and 
extended 1.73 m beyond the exit. The appendage was mounted 
on the plate in the free jet downstream of the exit of the open 
return wind tunnel. The flat plate was fitted with a distributed 
sand roughness consisting of No. 16 floor-sanding paper which 
extended 0.61 m downstream from the plate leading edge. 

All of the tests were run at a nominal free-stream velocity 
of 15.24 m/s corresponding to a chord Reynolds number of 
307,000. The turbulent boundary-layer thickness on the flat 
plate at the streamwise location corresponding to the leading 
edge of the appendage was 76 mm, giving a ratio of boundary-
layer thickness to appendage maximum thickness of 1.07. At 
this streamwise location the flat-plate Reynolds number based 
upon boundary layer momentum thickness was 6700. 

In each of the measurement planes shown in Fig. 1, data 
were taken at 26 locations spaced vertically through the shear 
layer and at 10 or more transverse (z) stations. 

Two wire geometries, horizontal and slant wires, used in 
making measurements near the plate surface are shown in Fig. 
2. Since the needles supporting the hot-wire sensors protrude 
through the surface of the flat plate in order to minimize probe 
interference effects, the vertical travel of the sensors is limited. 
However, the thick shear layer under present investigation 
required surveys to be made to about 100 mm above the plate 
surface. In order to accomplish this, the two hot-wire geom
etries shown in Fig. 2 also were fabricated with the needles 
supported vertically by means of a tube 3.18 mm in diameter 
which protruded through the surface of the flat plate. 

The measurements with the horizontal and slant wires were 
made sequentially and then the entire data set was assembled 

636/Vol . 113, DECEMBER 1991 Transactions of the ASME 

Downloaded 02 Jun 2010 to 171.66.16.104. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



1 .2 

1 .0 

0 . 0 

— KLEBANOFF 

O P9ESENT 

J I I L 
0 . 0 .2 .8 1.0 1.2 

Fig. 3(a) Mean velocity (uncertainty in UJv„ = ±0.014 at 20:1 odds) 

.10 

.08 

.06 

.04 

.02 

0 00 

-

I 

— KLEBANOFF 

z(nnn) 

0 0 

A 85 

\ A 

\ A 

\ A 

\ A 

\ A 
X A 

I I I I 

Fig. 3(c) Turbulent normal stress u2'(uncertainty in uj/v„ = ±0.002 at 
20:1 odds) 

3 0 . 

0 . 0 . 2 . 6 1.0 1.2 

25. 

20. 

^ x - 1 0 * 

v ; 

15. 

10. 

5. 

0. 

-

_ 

-

I 

A 
o 

_ 

A 
0 

KLEBANOFF 

A^ 
o 

I 

o N 

z(rna) 

0 0 

A 85 

0 . 0 .8 1.0 1.2 

Fig. 3(b) Turbulent normal stress u; (uncertainty in u;/v„ 
20:1 odds) 

±0.0018 at 

in order to perform the data reduction for the required flow 
variables. Thus it was important that the sensor portion of 
each wire be located as nearly as possible at the same point in 
space when the probes were interchanged. This was accom
plished by using special optics and techniques developed for 
this purpose as reported by McMahon et al. (1982). 

Static pressures were measured on the surface of the ap
pendage, on the plate surface using a static pressure tap device 
inserted into the probe positioning hole in the slide and in 
transverse measurement planes using a static pressure probe. 
The static pressure probe was rotated to match the known local 
flow yaw angle before the measurement was taken, so that no 
yaw correction was necessary. Previous measurements by Ku-
bendran et al. (1986), had shown that pitch errors in the meas
urement of static pressure were negligible. 

The three mean velocity components Ux, Uy, and Uz and the 
six turbulence quantities ux, uy, u'z, -uxuy, - uyuz, and - uxuz 
were measured. The measurement methods are described in a 
report by McMahon et al. (1982). 

Fig. 3(d) Turbulent shear stress 
±0.22 x 10-" at 20:1 odds) 

• uxuy (uncertainty in - uxUylvi 

Fig. 3 Comparison of the present measurements with the data obtained 
by Klebanoff (1954) (uncertainty in y/h = ±0.01 at 20:1 odds) 

3 Results and Discussion 
The principal results of this experimental investigation are 

measured values of the three mean velocity components Ux, 
Uy, and Uz and the six turbulence quantities u'x, u'y, u'z, — uxuy, 
- uyuz, and - uxuz at five streamwise stations near and down
stream of the appendage. Static pressure distributions on the 
surface of the appendage, the flat plate and in the three di
mensional boundary layer were measured. 

3.1 Two-Dimensional Boundary Layer. Before any sys
tematic data-taking was begun, the quality of the two-dimen
sional boundary layer on the flat plate was evaluated in the 
absence of the appendage. It was important that a fully de
veloped turbulent boundary layer had been generated which 
exhibited proper behavior for both mean flow and turbulence 
characteristics. 
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Fig. 4(a) x/c = 0.75 

The agreement between the present values for Ux and the 
data by Klebanoff (1954) is satisfactory as shown by Fig. 3(a). 
The u'x data taken here, Fig. 3(b), show the-normal stress u'x 

to be slightly larger near the outer edge of the boundary layer 
compared with the values reported by Klebanoff (1954). This 
small difference is due to the higher turbulence intensity in the 
free-stream for the present tunnel. Present data show lower 
values for uz and -uxuy near the wall compared to those 
obtained by Klebanoff (1954). 

Pierce et al. (1985) and three other experimentalists cited by 
him measured lower values of u'z and -uxuy being 10 to 12 
percent lower for - uxuy compared to the data by Klebanoff 
(1954). The present results for -uxuy are lower than the data 
obtained by Klebanoff (1954) by 10 percent near y/8 = 0.2. 

It was concluded that the flat plate boundary layer generated 
for these experiments was satisfactorily two-dimensional and 
classical in behavior, and that the measured mean and tur
bulence quantities agree with reported values to a degree that 
gives confidence in the appendage measurement technique. 
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Fig. 4 Cross-flow velocity vectors (uncertainty in y = ± 0.8mm, z 
±1mm, and in velocity vector = ± 0.001 v„ at 20:1 odds) 

Hot-wire measurements were carried out in the turbulent 
boundary layer at x = - 142 mm with the appendage removed 
and the results were compared with the classical data due to 
Klebanoff, 1954. 

Comparison of the present profiles for Ux, u'x, u'z and - uxuy 

with the data obtained by Klebanoff (1954) are shown in Fig. 
3. 

3.2 Investigation of Flow Symmetry. The two-dimen
sional turbulent boundary layer on the flat plate was surveyed 
at two different z-stations just upstream of the appendage 
leading edge, with the appendage removed, and was found to 
be at zero yaw angle within the accuracy of the measurement 
( ± 1 degree). 

The angle of attack was adjusted until the appendage surface 
static pressure pairs matched. To check the flow symmetry 
further, the local flow skew angles were measured at x/c = 
0.75 on either side of the appendage in the shear layer near 
the plate surface (y < 33 mm) where the skew angle gradients 
were largest. The skew angles were measured at z = ±25 mm 
and z = ± 52 mm. The data showed that the variation in skew 
angle with vertical distance, y, on either side of the appendage 
was similar but not symmetrical. It was necessary to change 
the appendage angle of attack by approximately 1.2 degrees 
(trailing edge toward the negative z direction) in order to achieve 
skew angle symmetry in the corner. This orientation of the 
appendage was fixed for the remainder of the tests. 

3.3 Flow Upstream of the Appendage. The upstream 
measurement station for these tests was specified to be at x/ 
c = -0 .47 , or 145 mm upstream of the appendage leading 
edge. At this location, the two-dimensional flow in the on
coming boundary layer was starting to turn to get around the 
appendage and the skew angle was quite uniform through the 
shear layer. The profile of the mean streamwise velocity com
ponent near the plane of symmetry (z = 0) was retarded com
pared to the profile at the most outboard location. This 
retarding effect was present to a measurable extent over a width 
of boundary layer that was almost three times the maximum 
width of the appendage, and the skewing effect was noted this 
far outboard as well. The presence of the appendage did not 
have a noticeable effect on the distribution of the turbulent 
normal and shear stresses in the boundary layer. 

3.4 Flow in the Corner and Wake of the Appendage. The 
skewing of the vorticity lines in the oncoming two-dimensional 
boundary layer and the separation and roll-up of the boundary 
layer near the nose of the appendage result in a horseshoe 
vortex being formed. Each leg of this horseshoe vortex trails 
down either side of the appendage near the plate surface. The 
two legs of the horseshoe vortex redistribute the mean flow 
and the turbulence quantities in the corner and then proceed 
downstream in the wake of the appendage with only slightly 
diminished strength where they again cause a significant re
distribution of the properties of the turbulent shear layer. 

The presence of the secondary flow vortex in the shear layer 
is most vividly seen by examining vector plots of the resultants 
of the mean flow vectors Uv and Uz in the y-z plane. Such a 
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Fig. 5(a) x/c = 0.75 

Fig. 5(b) x/c = 2.0 

presentation is seen in Fig. 4. All of the vector plots are con
structed with a view looking downstream along the right (po
sitive z) side of the appendage. The vector plot at x/c = 0.75 
shown in Fig. 4(a) is in the region where the flow around the 
appendage was slowing down and the static pressure was in
creasing. At first glance, there is no vortex-like signature pres
ent in this figure. This is because there was a large cross flow 
in the negative z direction as the flow followed the narrowing 
of the appendage while approaching the trailing edge. This 
geometry-induced cross flow masks the presence of the vortex. 

By the time the flow reached the trailing edge, Fig. 4(b), the 
velocity component Uz caused by geometrically-induced flow 
around the appendage had become much reduced, and the 
presence of the vortex is seen in the vector plot directly. As 
estimated from the vector plot of Fig. 4(b), the coordinates of 
the center of the root vortex at the trailing edge are at z = 28 
mm and y = 7 mm. This location of the vortex core is at 40 
percent of the appendage thickness away from the appendage 
chordline and 8 percent of the two-dimensional boundary layer 
thickness above the flat plate surface. 

z (mm) 

Fig. 5(c) x/c = 3.0 

Fig. 5 Contours of mean velocity Ux (uncertainty in UJva 

and in z = ±1mm at 20:1 odds) 
±0.014 

At two chord lengths downstream of the appendage leading 
edge, the vortex has moved away considerably from the plate 
surface and the vertical plane of symmetry. The coordinates 
of the vortex core at x/c = 2 are at z = 56 mm and y = 27 
mm which corresponds to 80 percent of the appendage thick
ness from the appendage chordline and 29 percent of the un
disturbed local shear layer thickness above the flat plate surface. 

By three chord lengths downstream of the appendage leading 
edge, Fig. 4(c), the vortex core has moved outboard an ad
ditional increment of 8 mm from the plane of symmetry, which 
is small compared with its outward movement between one 
and two chord lengths, while its height above the plate surface 
has remained almost constant. 

The contours of constant Ux in Fig. 5 correlate well with 
the location of the core of the trailing vortex as inferred from 
the vector plots of Fig. 4. There is a large positive gradient in 
the contour at about the center of the vortex. Inboard of this, 
the pumping action of the secondary flow vortex has brought 
high momentum fluid down near the plate surface from the 
outer regions of the shear layer. Outboard of the vortex center, 
the reverse is true. The effect of this pumping action is confined 
to approximately the lower half of the shear layer. The half 
width of the appendage wake outside the shear layer in the 
free stream as measured by a total pressure probe has been 
indicated schematically at x/c = 3.0. It was found that there 
is a conventional appendage wake present above the outer edge 
of the shear layer. 

The action of the secondary flow in redistributing the tur
bulent normal stress, ux, is seen in Fig. 6. Again, the peaks 
and valleys in the contours correlate with the vortex action 
centers as inferred from the vector plots. The presence of the 
appendage boundary layer is evident in the behavior of the 
data at x/c = .75 and at the trailing edge, where the contours 
rise for small values of z, Figs. 6(a) and 6(b). Downstream of 
the trailing edge, the pumping action of the secondary flow is 
still significant, and it greatly distorts the distribution of ux 
near the plane of symmetry (z = 0). The symmetrical behavior 
of the u'x distribution through the shear layer about the plane 
of symmetry at x/c = 3.0 is noted. 

For flow in the corner of the appendage of constant thickness 
as investigated by Kubendran et al. (1986), there was a marked 
similarity in the distribution of the turbulent normal stresses 
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u'x and u'z at the same z station for three streamwise measure
ment stations. Such a similarity is absent here, appearing nei
ther in the juncture nor in the wake. 

In general, the shear stress ~uxuy at x/c = 0.75 and at x/ 
c = 1.0 is minimally affected by the secondary flow except 
close to the appendage and near the plate surface, where the 
trailing vortex redistributes the turbulence. Downstream of the 
trailing edge as shown by Fig. 7, the shear stress profiles are 
redistributed by the root vortex especially near the plane of 
symmetry and near the center of the trailing vortex. In the 
plane of symmetry (z = 0) in the wake, — uxuy is zero over 
the outer two-thirds of the shear layer where Ux is almost 
constant. 

The turbulent shear stress - uxuz was found to attain very 
large values in the juncture, but by two chord lengths down
stream of the appendage leading edge the values were small at 
all values of z except near the plane of symmetry. By three 
chord lengths downstream of the appendage leading edge all 
the values have become much reduced. 

The turbulent shear stress - uyuz was found to peak up in 

n = .070 
o = .065 
A = .060 
• = .055 
• = .050 

Fig. 6(c) x/c = 2.0 

Fig. 6(d) x/c 

Fig. 6 Contours of constant normal stress ux (uncertainty in u;/v„ 
±0.0018 and in z = ±1mm at 20:1 odds) 

uxuy and the juncture and diminish downstream similar to 
- uxuz. In addition it was found that secondary flow produced 
regions of positive shear stresses - uyuz and - uxuz. This was 
also observed in the juncture flow of an appendage of constant 
thickness investigated by Kubendran et al. (1986). 

The pumping action of the secondary flow in redistributing 
the kinetic energy is also investigated. The secondary flow 
brings low turbulence level fluid from the edge of the shear 
layer down close to the plate surface and pushes high turbulence 
level fluid up from the vicinity of the plate surface further out 
into the shear layer. 

3.5 Pressure Field. The flow accelerates as it goes around 
the point of maximum thickness on the appendage and then 
slows as it approaches the trailing edge. This is reflected in the 
measured chordwise pressure distribution on the appendage in 
the irrotational portion of the flow. However, this inviscid 
pressure distribution is modified somewhat by the presence of 
the shear layer on the plate and the resulting secondary flow. 
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z (mm) 
Fig. 7 Contours of conslanl turbulent shear stress - uxuy at x/c = 3.0 
(uncertainty in -uxUylvl = ±0.22 x 10"" and in z = ±1mm at 20:1 
odds) 

The variation in the spanwise pressure distribution on the ap
pendage as measured at x/c = 0.23 and x/c = 0.75 is shown 
in Fig. 8(a). The variation is significant at the 23 percent chord 
station and is confined to the approximate thickness of the 
shear layer (the variation at large y is the effect of the ap
pendage tip). At the 75 percent chord station, the spanwise 
pressure distribution as well as the pressure distribution on the 
plate surface in the transverse direction as shown in Fig. 8(b), 
is almost constant. At x/c = 1, the transverse pressure vari
ation on the plate surface is significant as shown by Fig. 8(b). 
The pressure variation on the plate surface calculated using 
the two-dimensional panel code is also shown in Fig. 8(b). This 
code is a two-dimensional analysis in the x-z plane of this flow 
problem. The code does not include any secondary flow or 
viscous effects. The experimental data do not match the pre
dicted values near the trailing edge because the inviscid theory 
predicts a relatively high pressure there. At the measurement 
stations downstream of the trailing edge, the transverse pres
sure distributions on the plate flatten out and the static pressure 
is at essentially the ambient value. 

The static pressure gradient through the shear layer was 
found to be essentially zero at x/c = 0.75 and 1.0 except very 
near the plane of symmetry. The static pressure for z = 25 
mm at the trailing edge was seen to decrease approaching the 
center of the trailing vortex. Excluding the results at x/c = 1 
and z = 25 mm, the static pressure surveys made at the two 
streamwise stations of x/c = 0.75 and 1 showed that the static 
pressure gradients through the shear layer were small. The 
static pressure gradients through the shear layer were found 
to be negligible for flow downstream of the appendage. 

4 Conclusions 
Measurements of mean velocity components, turbulence 

stresses and pressure distributions have been carried out in the 
juncture and downstream of an appendage mounted on a flat 
plate. The turbulent boundary layer on the flat plate was fully 
developed and its thickness at a location corresponding to the 
appendage leading edge was 1.07 times the maximum thickness 
of the appendage. The appendage was symmetrical, was set at 
zero incidence with respect to the flow, and had an effectively 
infinite aspect ratio. 

The presence of the appendage results in the formation of 
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Fig. 8 Static pressure distribution on surfaces (uncertainty in Cp = 
±0.05, in y = ± 0.8mm and in z = ±1mm at 20:1 odds) 

a streamwise root vortex which trails downstream in the corner 
and behind the appendage. The pumping action of the root 
vortex is such as to cause a significant redistribution of both 
the mean flow and turbulence properties in the shear layer. 
This redistribution is still significant three chord lengths down
stream of the appendage leading edge. 

The secondary flow has a considerable effect on the wake 
flow behind the appendage in the lower one-third of the shear 
layer on the flat plate. The center of the vortex-like secondary 
flow is located close to the plate surface at the appendage 
trailing edge at about 8 percent of the local thickness of the 
shear layer. The center is 40 percent of the appendage thick
nesses away from the trailing edge. By the time the flow reaches 
x/c = 3.0, this center has risen to a height corresponding to 
29 percent of the local shear layer thickness and has moved 
further away from the vertical plane of symmetry (z = 0) to 
a distance of 80 percent of the appendage thickness. The ap
pendage turbulent boundary layer separates at the trailing edge 
and interacts with the trailing root vortex. 

At x/c = 0.75 the pressure distribution on the plate and 
appendage surface is well represented by a potential flow de-
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scription except in the immediate vicinity of the trailing vortex. 
Downstream of the appendage the secondary flow has only a 
small effect on the static pressure field. At all stream wise 
stations, the static pressure gradient through the shear layer 
is small. 
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Maximum Pressure Head Due to 
Linear Valve Closure 
The maximum pressure head resulting from one-speed closure of wide open valves 
is investigated. The dimensionless variables formulated in this study make the subtle 
effect of the initial valve head loss explicit and separate from that ofthepipefrictional 
head loss. The maximum head is related to initial pipe frictional head loss, the initial 
valve head loss, the inherent flow characteristic of the valve, and the closure period 
by plots of dimensionless variables. The trends of the variation of the maximum 
pressure head are discussed. An example is used to illustrate the usage of the plots, 
and to show the advantage of having a global perspective of the phenomenon in 
the selection and sizing of valves from the water hammer point of view. 

Introduction 
Consider a valve at the outlet of a pipe discharging liquid 

from a constant head reservoir. Closure of the valve results in 
a pressure rise, which propagates toward the reservoir at a 
speed equal to the pressure wave speed of the pipe-liquid sys
tem. Subsequent reflections of this pressure wave at the pipe 
ends cause local pressures to fluctuate until the fluid motion 
is damped out by system friction. The maximum head occurs 
at the valve. An accurate calculation of the maximum pressure 
head rise due to valve closure is important in the design and 
operation of pressurized piping systems. Higher than expected 
water hammer pressure threatens the integrity of a piping sys
tem. 

Several independent variables affect the magnitude of the 
maximum pressure rise. They are: closure period, head loss 
across the valve before closing, inherent hydraulic character
istic of the valve, pipe frictional head loss, and initial discharge. 
The combined effects of these variables on the maximum pres
sure head are nonlinear and difficult to visualize. This paper 
separates the effects of head losses of the pipe and the valve 
on the maximum pressure head, and presents a global per
spective of the phenomenon. 

Literature Review 
Various aspects of the valve closure problem have been stud

ied by many investigators (Joukowsky, 1904; Allievi, 1925; 
Dawson and Kalinske, 1939; Kerr, 1951; Parmakiam, 1963; 
Vallentine, 1965; Sharp, 1969, Jones and Wood, 1972). Many 
of these earlier studies assume the pipe to be frictionless. Sharp 
(1974) discussed the effect of pipe friction on the maximum 
surge pressure. Wood and Jones (1974) suggested adding the 
steady state frictional pressure drop to the maximum pressure 
for frictionless pipe as a rough estimation of the effect of pipe 
line friction. 

More recently, Ruus and El-Fitiany (1980) presented com
prehensive charts for water hammer due to valve closure. The 

Contributed by the Fluids Engineering Division and presented at the Winter 
Annual Meeting Dallas, Texas, November 25-30, 1990 of THE AMERICAN SO
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Division December 2, 1990. 

maximum pressure head rises at the valve and at the midpoint 
of the pipe were plotted against the Allievi pipeline constant, 
the relative valve closure time, and the ratio of pipe frictional 
head loss versus reservoir static head. Using a similar approach, 
Karney and Ruus (1985) presented charts for maximum head 
resulting from closure of full open valves. 

This study differs from the studies by Ruus and El-Fitiany 
(1980) and by Karney and Ruus (1985) in an important way. 
These two studies used the constant static reservoir head to 
nondimensionalize variables such as the pipe frictional head 
loss, the maximum head rise, and the pipeline constant. The 
steady-state valve head loss was treated as a part of the static 
reservoir head instead of as a separate variable. Consequently, 
the influence of the initial valve loss on the maximum head is 
not explicit in their plots. In this study, the initial head loss 
across the valve is treated as an independent variable. The 
dependence of the maximum head on the initial valve head 
loss is shown explicitly in a set of dimensionless plots. 

Purpose and Scope 
This study aims at providing an overall picture for the max

imum pressure head as a result of valve closure at one speed 
from the full open position. The method enables the separate 
effects of the initial valve head loss and the pipe frictional 
head loss to be explicitly evaluated. Approximate minimum 
valve closure time periods and reasonable water hammer pres
sure allowances can be estimated with only a few simple cal
culations. 

The plots presented here complement detailed computer sim
ulations when the specific valve characteristic and closure speed 
are known and accurate maximum pressure head is desired. 

Inherent Valve Characteristic 
The flow rate through a valve is a function of pressure drop 

and valve opening. There are several ways to describe this 
relationship. This study uses the common valve flow coeffi
cient. With a pressure drop of 1 psi (6.89 kPa) across the valve, 
the flow rate of 60°F (15.6°C) water in U.S. gpm at a given 
valve opening is called the flow coefficient C„ of the valve at 
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Fig. 1 Inherent flow characteristic of actual gate, plug, and butterfly 
valves 

that opening. Flow coefficients are determined by standardized 
tests (Lyons and Askland, 1975). 

The inherent hydraulic characteristic of valve is expressed 
by a curve showing C„ as a function of valve position in degrees 
or percentage of opening. Customarily, Cv is expressed as a 
percentage of CM, which is the C„ when the valve is wide open. 
CM can vary significantly with the valve's size, type, and man
ufacturer. It reflects the capacity of the valve and is routinely 
provided by manufacturers based on their tests or calculations. 
Figure 1 shows the inherent flow characteristic of a gate valve, 
a plug valve, and a butterfly valve. 

Governing Equations and Numerical Solution Procedure 

Assuming that the convective changes in cross-sectional av
erage velocity and in pressure to be negligible, and that the 
density of the liquid and the pipe cross-sectional area to be 
constant except in the definition of the pressure wave speed, 
the equation of motion and the continuity equation governing 
one-dimensional transient flow are (Wylie, 1984, 1985): 

d G + / Q l G i dH J_ 
dX+A dT ' IDA1 

dH a2 dQ 
— + - = 0 
dT gA dX 

-0 (1) 

(2) 

in which H = piezometric head, Q = volumetric flow rate, 
D = pipe diameter, A = cross-sectional area of the pipe, g 
= gravitational acceleration, / = Darcy-Weisbach friction 
factor, a = pressure wave speed of the liquid-pipe system, X 
= distance, and T = t ime. The stated assumptions are valid 
when Q/A is much less than a, which is the case under con
sideration. 

Represent the steady-state volumetric flow rate by Q0 and 
the head rise due to sudden and complete stoppage of the 
velocity V0 ( = Q0/A) by H0. This head rise, called potential 
surge, can be expressed as (Wylie and Streeter, 1983) 

Hn = -
a_Vo 

g 
(3) 

Let v = Q/Qo, h = H/H0, x = XL, and t = aT/L, L being 
the length of the.pipe. Equat ions (1) and (2) take the following 
dimensionless form 

dh dv _ , , . 
— + — + Rv\v I = 0 
dx dt 

dh dv n 

77 + 7" = ° dt dx 

where 

R = 
fLVo 

2aD 

(4) 

(5) 

(6) 

This choice of the dimensionless variables is motivated by 
the need to separate the initial valve head loss from the pipe 
wall frictional head loss. It deviates from the traditional Al-
lievi's choice where the static reservoir head Hr was used to 
form the dimensionless head H/Hr and the dimensionless pipe
line constant aVo/(2gHr). Allievi's theory deals with water 
hammer in a frictionless pipe. With the presence of pipe wall 
friction, however, Allievi's dimensionless variables are not the 
best choice. In this case, the valve head loss (as a port ion of 
the static reservoir head) appears in both the Allievi variables 
(see Ruus and El-Fitiany, 1980, and Karney and Ruus, 1985). 
As a result, the effect of valve head loss, which is very sig
nificant as demonstrated later, can not be shown explicitly. 

Using the characteristics method, Eqs . (4) and (5) are trans
formed into a pair of total differential equations 

dh dv „ , , 
— ±—±Rv\v\=0 
dt dt 

which are valid along characteristics 

dx 

dt 
-= ±1 

(7) 

(8) 

It is assumed that the velocity head and the entrance loss 
are negligible. With the datum for head taken at the down
stream flange of the valve, the boundary condition at the 
reservoir end is 

h(0,t) = hf+hv 

where 

and 

hf=R-
Hn 

(9) 

(10) 

A = 
a = 

c„ = 
CvO — 

D = 
dt = 

f = 
g = 

H = 
Hn = 
Hf = 
H„ = 

pipe cross-sectional area 
wave speed 
valve flow coefficient 
initial (full open) valve flow 
coefficient 
pipe diameter 
time step size 
Darcy-Wiesbach friction factor 
gravitational acceleration 
piezometric head 
potential surge 
pipe frictional head loss 
head loss across a valve 

h --

hf --

K --

L --
N --

Q = 
QM '-
R = 

= dimensionless piezometric 
head, h =H/H0 

- dimensionless head loss due to 
pipe friction, hf = Hf/H0 

= dimensionless valve head loss, 
h„ = H„/Ha 

= pipe length 
= number of computat ional 

reaches 
= volumetric flow rate 
= initial steady state flow rate 
= a dimensionless constant de

fined by Eq . (6) 

T 
t 

V 

v„ 
V 

X 
X 

T 

time 
dimensionless time, t = Ta/L 
average velocity over pipe 
cross-section 
steady state average velocity 
over pipe cross-section 
dimensionless volumetric flow 
rate, v = Q/QQ 

distance along the pipe 
dimensionless distance along 
the pipe, x = X/L 
dimensionless valve flow coef
ficient, T = cv/cM 
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h„ 
Ho 

(11) 

are the dimensionless head losses in the pipe and across the 
valve prior to the valve closure. Hf = the initial steady-state 
pipe frictional head loss, Hv = the initial steady-state head 
loss across the valve. 

At the downstream end, it is assumed that the pipe extends 
beyond the valve for a short distance (about 10 diameters) to 
enable full pressure recovery before discharging the fluid into 
atmosphere. The discharge versus head loss relationship of the 
valve provides the downstream boundary condition 

y ( U ) = T(7) 
Ml,/) 

K 
(12) 

where r(t) = C„(t)/Cv0, and is shown as percentage of maxi
mum flow in Fig. 1. At t = 0 the valve is wide open and T = 
1. In the numerical solution process, each curve in Fig. 1 is 
represented by 11 equally spaced points. At any given moment, 
T is obtained by linear interpolation. 

The initial conditions are 

v(x,0) = 1 

and 

(13) 

(14) h(x,0) = hf+hv-Rx 

Figure 2 depicts the finite difference approximation to Eq. (7). 
The pipe is divided into N computational reaches of equal 
length. At the interior point P, the unknown h and v are related 
to the known conditions at points A and B by 

C+: hP-hA + (vp- vA) + RvA\vA\dt = 0 (15) 

C-. hp-hB-(vp-vB)-RvB\vB\\dt = Q (16) 

where dt is the time step. These two equations yield a unique 
solution for h and v at P. 

At the upstream end of the pipe, the head hp is known from 
Eq. (9) and the flow vp is solved from the C~ equation as 

vP = hP-hB + vB-RvB\vB\dt (17) 

At the downstream end, the C+ equation and Eq. (12) enable 
the head and the flow to be solved 

vP=-

and 

T 

h„ 

T 4 
-r^ + — (hA + vA-RvA\vA\dt) 
hv K 

(18) 

hp = hA-vP+vA-RvA\vA\dt (19) 

The discretization error decreases with increasing N. Suf
ficiently accurate results were obtained with N = 20. 

Ranges of Dimensionless System Variables 
The preceding section shows that the dimensionless variables 

hf( = R), h0, and r(t) completely characterize the valve closure 
problem. The ranges of magnitude of these three parameters 
are now considered. 

The lower limit for hf approaches zero when the pipe is 
short, smooth, or the velocity is low. There is no upper limit 
for hj. However, a value of 1.0 may be considered high, and 
is used as the upper limit. For a pipe 1 ft (0.3 m) in diameter 
and 5 miles (8.05 km) long with a Darcy-Weisbach friction 
factor of 0.02, a pressure wave speed of 3500 ft/s (1067 m/ 
s), and an initial velocity of 7 ft/sec (2.13 m/s), the value for 
fy is 0.53. 

The range of hv is from 0.0001 to 0.01. For an initial velocity 
of 7 ft/sec (2.13 m/s) and a pressure wave speed of 3500 ft/ 
s (1067 m/s), and for a very large full open valve head loss of 
10 velocity heads, h„ equals 0.01. 

t 

p 

\ c -

B A 

P 

c 7 \ c -

B A 

P 

c7 
t+dt 

t-dt 

1 2 3 

INLET OUTLET 

Fig. 2 Finite Difference approximations along the characteristics in 
the x - / plane 

The ranges of hfand hv cover most situations excepting those 
with unusually high pipe loss or with unusually low valve loss. 

This study assumes the valve position to be a linear function 
of time. A dimensionless valve closure time tc is defined as the 
closure clock time Tc divided by the travel time of a pressure 
wave over one pipe length (L/a): 

U = ^ (20) 

The tc considered are 1, 5, and 10. tc = 1 represents an "in
stantaneous" closure in the sense that the potential surge is 
realized. tc = 10 represents a very slow closure. 

Effects of Pipe Friction, Initial Valve Head Loss, In
herent Valve Characteristic, and Closure Time on Max
imum Head 

The calculated maximum pressure heads at the valve are 
shown in Fig. 3 for the gate valve, the plug valve, and the 
butterfly valve for tc = 1,5, and 10. Terms such as maximum 
head, valve head loss, and pipe friction loss used in Fig. 3 and 
in the ensuing discussions are the respective quantities non-
dimensionalized by the potential surge H0. 

The top row in Fig. 3 shows that for tc = 1, the maximum 
head is essentially a linear function of pipe friction, and that 
the initial valve head loss has little influence on the maximum 
head. Since the initial valve head loss is small (less than one 
thousandth of the potential surge), the maximum heads shown 
are essentially the maximum head rises as well. The lowest 
value of the maximum head at the valve is unity and it occurs 
for a frictionless pipe. In dimensional terms, the lowest max
imum head equals the potential surge. For pipes with frictional 
head loss, an additional head rise resulting from line pack 
(Wylie and Streeter, 1983) is added to the potential surge. This 
additional head rise is proportional to the initial pipe frictional 
head loss. The valve type and the inherent valve characteristic 
have negligible effect on the maximum head rise when the 
valve closure is sufficiently rapid. The closure is rapid when 
the valve is closed before the reflected wave from the reservoir 
arrives at the valve. 

As the valve closure time increases, the maximum head sur
face becomes more warped (middle and bottom rows of Fig. 
3). The effects of the initial valve head loss and the inherent 
valve flow characteristic become more significant for longer 
closure times. For a specified initial pipe loss, the maximum 
head decreases with increasing initial valve head loss. The rate 
of decrease changes with both pipe friction and valve loss. 
This variability is most pronounced for butterfly valves, mod
erately so for plug valves and less so for gate valves. 

Tabic 1 lists the maximum head at the four corners of the 
surface plots. It presents the extreme values of the maximum 
head for the ranges of initial pipe friction loss and valve head 
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Fig. 3 Dimensionless maximum pressure heads at the valve for the 
gate valve (left column), the plug valve (middle column), and the butterfly 
valve (right column) at tc = 1 (top row), tc = 5 (middle row), and rc = 
10 (bottom row) 

Fig. 4 Dimensionless maximum head for hv = 0.001 for gate valve (left), 
plug valve (middle), and butterfly valve (right) 

loss considered. For each type of valve, the highest maximum 
head occurs at maximum pipe friction loss and minimum valve 
head loss (column 4). This trend can be explained as follows. 
First, higher pipe wall friction results in more head rise due 
to line pack. Secondly, lower initial valve loss relative to the 
pipe frictional head loss makes the valve less effective in slow
ing down the flow during the initial stroke of the valve closure. 
The flow is unimpeded during the first portion of the closing 
stroke. The flow begins to slow down only after the flow area 
of the valve is sufficiently reduced to produce a more sub
stantial head loss. Therefore, for valves with low initial head 
loss, the effective time period to stop the flow is shorter than 
the valve closure period, resulting in a higher maximum head 
rise. 

Referring again to Table 1, the lowest maximum head ' 'rise'' 
occurs for zero pipe friction loss and maximum valve head 
loss (column 5). The reasons are opposite to those explained 
above. With the absence of pipe wall friction, there is no head 
rise due to line pack. With a larger initial valve head loss, the 
flow is reduced to zero over a longer time period, resulting in 
less head rise. 

Table 1 Summary of maximum heads 

to 
(1) 

1 

5 

10 

Type 
(2) 

gate 
plug 

butterfly 

gate 
plug 

butterfly 

gate 
plug 

butterfly 

A„=.0001 
hf=0.0 

(3) 
1.00 
1.00 
1.00 

1.00 
1.00 
0.98 

1.00 
0.98 
0.78 

/!„=.0001 
hf=1.0 

(4) 
1.87 
1.86 
1.82 

1.79 
1.77 
1.69 

1.72 
1.72 
1.60 

A„=.01 
' hf= 0.0 

(5) 
1.01 
1.01 
1.01 

0.94 
0.80 
0.61 

0.77 
0.34 
0.29 

hv = .01 
hf= 1.0 

(6) 

1.83 
1.77 
1.76 

1.73 
1.59 
1.52 

1.65 
1.48 
1.33 

Wood and Jones (1974) suggested, in terms of notations 
used here, that the maximum head can be roughly estimated 
by adding hf to the maximum head obtained with hf = 0. It 
can be demonstrated that such a procedure does not always 
yield conservative results. When the frictional resistance to 
flow is significant, the maximum head so estimated can be 
either above or below the correct value, depending on the valve 
closure time. 

Consider a steady state flow with hv = 0.01 and hf = 1.0. 
Suppose a plug valve is closed in L/a seconds. The resulting 
dimensionless maximum head shown in Table 1 is 1.77. Adding 
the steady state pipe frictional head loss (1.0) to the frictionless 
maximum head (1.01) yields a maximum head of 2.01, which 
overestimates the maximum head by 0.24 (2.01-1.77). This 
amounts to 0.24//0 or 24 percent of the potential surge. 

However, suppose that the same valve is closed in \QL/a 
seconds. Table 1 shows a dimensionless maximum head of 
1.48. Adding the steady state frictional head loss (1.0) to the 
frictionless maximum head (0.34) yields a maximum head of 
1.34. The estimation now underestimates the maximum head 
by 0.14 (1.48-1.34) or 14 percent of the potential surge. Thus, 
not incorporating the pipe friction rigorously in the calculation 
may result in significant error in the maximum head. 

Figure 4 shows the maximum head as a function of pipe 
frictional head loss and valve closure period for an initial 
dimensionless valve head loss of 0.001. This figure is useful 
in determining the shortest closure period so that the maximum 
head at the valve does not exceed a specified limit. It is seen 
that, with the initial valve head loss specified, the maximum 
head increases nearly linearly with increasing pipe friction loss. 
The maximum head decreases with a more variable rate as the 
valve closure period is lengthened. The rate of decrease is the 
greatest for butterfly valves with the shortest closure time. 

Column separation may occur as a result of the valve closure. 
As an indication of the likelihood of column separation, the 
intersections of minimum head surfaces with the plane of zero 
head over the hf versus hv plane were obtained. The results 
indicate that, for horizontal pipes, systems with hf less than 
approximately 0.6 are likely to have column separation. hv has 
little impact on gate valves for the three closure speeds con
sidered. Greater hu (0.001 or higher) significantly reduces the 
likelihood of column separation for butterfly valve with tc = 
10. Full computer simulation should be carried out if column 
separation is suspected. 

Application Example 
Consider a 1 ft (0.3 m) steel pipe that delivers 3.5 cfs (0.099 

rnVs) of water for a distance of 10 miles (16.1 km). The Darcy-
Weisbach coefficient is estimated to be 0.013, which gives Hf 
= 212 ft (64.6 m). Suppose a 1 ft (0.3 m) diameter plug valve 
with a wide open C„ value of 3455 at the pipe outlet is closed 
linearly in 76.5 seconds. With the valve wide open at the steady 
state, the initial head loss through the valve is calculated to be 
0.48 ft (0.146 m). Assume the speed of the pressure wave in 
the system to be 3450 ft/sec (1052 m/s). The relevant param-
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eters are: H0 = 478 ft (146 m), hf = 0.44, hu = 0.001, and tc 

= 5. Entering Fig. 3 (figure in the middle row and middle 
column) with these values, one finds the dimensionless max
imum head to be 1.23. Therefore, the maximum head rise is 
1.23i/oOr 588 ft (180 m). 

If the maximum head is limited to 400 ft (122 m), then the 
closure time must be lengthened if the same valve is to be used. 
The shortest closure time to satisfy this constraint can be found 
from Fig. 4. One enters Fig. 4 (middle figure) with a dimen
sionless maximum head of 400/H0 = 0.84 and a hf value of 
0.44 to find a dimensionless closure time of 30. Thus, the valve 
should be closed no faster than 30L/a or 459 s. 

If this closure time is too long, then one should consider 
other types of valves. Figure 4 suggests that the butterfly valve 
is better suited to satisfy the maximum pressure requirement 
since its rate of decrease of the maximum pressure with closure 
period is the fastest. The capacity (i.e., CM) of the valve needs 
to be checked to see if it is comparable to that of the plug 
valve. If not, then curves similar to those in Fig. 4 but with 
different hv values can be used to find the shortest closure 
time. 

The precision of using the dimensionless plots to obtain the 
maximum pressure rise is limited by the physical size of the 
plots. For the calculations demonstrated here, plots twice as 
large as those shown were used. A direct calculation of the 
time history of the head at the valve in the example was made 
by solving Eqs. (1) and (2) using the method of characteristics 
(Wylie and Streeter, 1983). With twenty computational reaches, 
the calculated maximum pressure head at the valve was 585 
ft. Comparing this value with the 588 ft obtained from Fig. 
4, the error is less than one percent. This error can be reduced 
if Fig. 4 is presented with a larger physical dimension. 

Summary and Conclusion 

The valve closure problem of water hammer is investigated 
by a parametric study of the governing equations in a dimen
sionless form. The results are presented by a set of dimen
sionless plots. The plots show that the initial pipe friction head 
loss, the initial head loss across the valve (or, indirectly, the 
valve capacity), the inherent valve flow characteristic, the one-
speed valve closure period, and the valve type all influence the 
maximum head in a nonlinear fashion. The effects of the initial 
valve head loss and the pipe frictional head loss on the max

imum pressure head are explained and independently evalu
ated. An example is used to demonstrate the utilities of the 
plots. 
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Torque Measurements of 
Corotating Disks in an 
Axisymmetric Enclosure 
Torque measurements, which can be related to viscous dissipation, were made in a 
simulated disk drive consisting of a single or multiple corotating disk stack enclosed 
in an axisymmetric shroud. The effects of rotational velocity, axial and radial 
spacing, and the position and thickness of simulated read/write arms between disks 
on torque were studied. Correlations are presented to describe the results of the 
unobstructed cases and the cases with the read/write arms at their innermost position, 
and a method is introduced to calculate the torque at intermediate arm positions. 

Introduction 
Thermal expansion in magnetic recording disks and other 

components of a disk drive can cause errors in positioning 
read/write heads over data tracks, resulting in limitations on 
the minimum spacing between data tracks written on a disk. 
Heat transfer from disks to the air inside the drive enclosure 
affects the thermal expansion of the components of a disk 
drive and is a problem of current interest (see Chang et al., 
1988 and Torok and Gronseth, 1988). Eibeck et al. (1989) 
presented a thermal model which predicts the temperature dis
tribution and resulting thermal expansions in an operating disk 
drive, and reported a lack of reliable information on viscous 
dissipation in disk drives. Sato et al. (1988) studied heat transfer 
in Helium-filled drive enclosures, and presented an approxi
mate result for viscous dissipation which included only the 
effects of disk radius, rotational velocity, and fluid properties. 
Accurate measurements of viscous dissipation can benefit the 
computation of heat transfer in rotating disk systems by serving 
as a check on the accuracy of numerical solutions. 

In current disk-drive systems, viscous dissipation, or aero
dynamic heating, is a minor heat source and in many cases 
can be neglected in a thermal analysis of a disk drive. As 
rotational velocities are increased to reduce access time, viscous 
dissipation is expected to rise considerably, making it a sig
nificant heat source in a drive enclosure and an important 
consideration in disk-drive design. 

A study of a single rotating disk in a housing was performed 
by Daily and Nece (1960). They state that the mode of flow 
between a rotating disk and the stationary housing only de
pends on disk Reynolds number and the ratio of the disk radius 
to the clearance between disk and housing. Daily and Nece 
suggested that four modes of flow can be present: Regime I 
in which laminar boundary layers on the disk and housing are 
merged; Regime II in which separate laminar boundary layers 
are present on the disk and housing surfaces; Regime III with 

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
October 8, 1990. 

turbulent, merged boundary layers; and Regime IV with tur
bulent, separate boundary layers. For a given axial clearance 
to disk radius ratio, the flow may or may not experience all 
four regimes over a practical Reynolds number range. 

Daily and Nece (1960) present theoretical and experimental 
determinations of the nondimensional torque, or moment, 
coefficient, C,„. They found that the moment coefficient varies 
as Re"', Re'1/2, Re"1/4, and Re"1/5 for the Regimes I through 
IV, respectively. While the moment coefficients presented in 
Daily and Nece can be used to predict the viscous dissipation 
for the case of a single shrouded disk, no information is avail
able to predict the dissipation in multiple disk stacks. 

Experimental Approach 
In order to determine the viscous dissipation in systems 

relevant to disk-drive designers, torque measurements were 
made on an experimental disk drive which emulates basic disk-
drive features. Torque measurements indicate viscous dissi
pation since the power required to rotate a disk stack at steady 
state is equal to the frictional losses between the disks and the 
air, i.e., the viscous dissipation, less any losses due to bearing 
friction. A disk stack and hub assembly were rotated within 
a smooth, sealed cylindrical shroud, with the effect of read/ 
write arms on dissipation simulated by placing a bluff body 
of rectangular cross section into the gaps between disks. The 
results, presented in the form of dimensionless moment coef
ficients, reveal the dependence of torque on Reynolds number, 
disk spacing, tip clearance, and the placement of arms in the 
flow. 

The shaft power input was determined by measuring the 
restraining torque necessary to prevent the rotation of the 
shroud. The apparatus, illustrated in Fig. 1, consists of the 
following main components: a drive assembly, shroud, torque 
balance, and supporting structure. The drive assembly is 
mounted vertically at the center of the base. The torque balance 
is suspended below the upper support plate and held the shroud 
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Fig. 1 Experimental apparatus 

in position around the disks with the centerline of the shroud 
coincident with the axis of rotation of the disk stack. Details 
of this apparatus are available in Hudson (1989), and are 
summarized below. 

The drive assembly includes a drive motor, grinder spindle, 
and disk-drive hub. The drive motor is a Pittman 5223 brushless 
DC motor (400 watt output at 10,000 rpm), capable of driving 
the spindle to 10,000 rpm (1047 rad/s). The spindle is a Gilman 
1875 grinder spindle which can operate at speeds up to 10,000 
rpm while limiting radial runout to 0.008 mm. The hub is a 
cylindrical shaft, permanently attached to the spindle, with an 
outside diameter matched to the inside diameter of the disks 
(radial clearance = 0.012 mm). 

Figure 2 shows details of the hub, disk stack, and shroud. 
Actual magnetic recording disks were used (Iron Oxide media) 
with a 130 mm outside diameter, 40 mm inside diameter, and 
a thickness of 1.93 mm. The disks were separated on the hub 
by spacers having inside diameters that allow a slip fit over 
the hub (40.02 mm) and outside diameters of 50.80 mm. Three 
spacer sets were fabricated with different thicknesses; 12.70 
mm, 6.35 mm, and 1.58 mm. 
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The shroud assembly, a circular cylinder with flat end plates, 
was suspended above the disk stack by the torque balance, 
enclosing the disk stack while allowing no physical contact 
with the disks or hub. The lower end plate is an annular disk, 
which fits around the bottom of the hub (radial clearance = 
0.25 mm), at a vertical position adjusted to match the number 
of disks and the axial spacing. In all cases, the gap height 
between corotating disks is the same height as the gap between 
the end wall of the shroud and the adjacent disk surface. 

To study the effect of read/write arms on torque, bluff 
bodies of rectangular cross section were inserted into the gaps 
between neighboring disks and between the disks and shroud 
end walls. Two sets of arms were fabricated, with thicknesses, 
represented by the parameter h, of 3.175 mm and 6.350 mm. 
The three arm positions defined in terms of R*, the radial 
position of the tip of the arm relative to the disk radius, were: 
0.933, 0.738, and 0.542. 

The torque balance measured the moment about the axis of 
rotation of the shroud (coincident with the axis of rotation of 
the drive assembly) in order to determine the shaft power input 
to the disk drive. 

The torque balance measured the restraining torque on the 
shroud by measuring the restraining force acting on a moment 
arm attached to the balance. The force transducer, with a 3 
mV/V full scale sensitivity over a 500 gram range, used a 4 
element strain-gage bridge on a bending member to determine 
the force applied to the moment arm. 

The shroud was suspended in the correct position and ori
entation relative to the rotating disk stack on ball bearings 
with a contact diameter of approximately 1 mm (.040 in.), 
spaced 70 mm apart. Friction in these bearings was a limiting 
factor in the accuracy of the torque balance. When the speed 
of the drive was increased, the friction of the bearings acted 
in the same direction as the restraining torque, resulting in a 
reduced measured value of the shroud torque. When the drive 
speed was decreased, the bearing friction torque opposed the 
restraining torque, giving a measured value equal to the com
bined total of the shroud torque and the bearing friction torque. 
This hysteresis was found to be approximately 0.1 Newton-
millimeters (N-mm). 

Preliminary results suggested that the manufacturer's cali
bration of the transducer was insufficient to ensure accurate 
readings, therefore a calibration procedure was implemented. 
A calibration balance, which transmitted the vertical gravi
tational force acting on a weight to a horizontal force, provided 
a moment on the torque balance. The calibration procedure 
involved placing known weights on the calibration balance and 
measuring the force transducer output after the system had 
reached its equilibrium position. A typical calibration would 
show a linear relationship between applied torque and meas
ured output voltage over the range 0-18 N • mm with a standard 
deviation of less than 0.05 N-mm for 18 calibration points. 

The data acquisition system consisted of the following main 
components: a Fluke 2400B data logger with a high perform
ance A/D converter with 1 microvolt precision for reading 
bridge excitation and bridge output voltages; a Fluke Helios 
datalogger with an analog output to set the motor speed and 
a counter/timer to measure rotational velocity (the motor was 
equipped with a 500 line per revolution optical shaft encoder); 
and finally, a microcomputer to coordinate the operation of 
the disk drive and data acquisition equipment. 

During an experiment, the rotational velocity of the disk 
stack was set by ramping the driver board voltage to the ap
propriate value and then waiting 90 seconds to allow the ap
paratus to reach a steady rotational velocity. After this pause, 
the angular velocity was read by the counter/timer, recording 
the number of pulses from the shaft encoder over a period of 
.66 seconds. This was repeated twice at 5 second intervals. A 
variation in rotational velocity of more than 0.3 percent led 
to a reading being rejected. 

Results 
Torque measurements were made on the single disk and on 

a disk stack of 3 and 5 disks at nine test conditions consisting 
of the matrix of three gap aspect ratios (H/R of 0.195, 0.098, 
and 0.024 and three tip clearance ratios (a/R) of 0.015, 0.031, 
and 0.077. The results of the single disk studies are presented 
first and compared to the results of Daily and Nece (1960). 
The multiple disk torque measurements follow, leading to a 
general result for multiple disk configurations. 

A portion of the experimental matrix was repeated with arms 
obstructing the flow. For 1 and 3 disks in a stack, torque 
measurements were made for arms positioned at R* = 0.54, 
0.74, and 0.93, where R* = RaTm/Rnsk- Tests were conducted 
for two arm blockage ratios (B = h/H) of 0.25 and 0.50 with 
a gap aspect ratio of H/R — 0.195. A gap ratio of H/R = 
0.098 was also tested for the arm blockage ratio of 0.50. 

All data are reported in the form of moment coefficients, 
Cm, as a function of Reynolds number, Re, where 

Re = o)i?Lk/" (1) 
and 

T 

l/2pC0 # d i s k 

Uncertainty. The dominant uncertainty in the torque 
measurements arose as a result of the hysteresis in the torque 
balance due to bearing friction. The uncertainty was approx
imately constant throughout the experiments and was esti
mated to be ±0.1 N-mm. This was determined from repeated 
tests with the speed increasing and then decreasing. This ab
solute level of uncertainty led to large relative uncertainties in 
the torque measurements at rotational velocities less than 3000 
rpm. For this reason, the correlations presented in this paper 
will be based on the data measured at rotational velocities 
greater than 3000 rpm. 

Single Disk. Figure 3 presents the torque measurements 
for the case of gap ratio of H/R = 0.098 and tip clearance 
of a/R = 0.015, compared with the correlations presented by 
Daily and Nece (1960) for their case of H/R = 0.115. The 
present data cover the Reynolds number range over which Daily 
and Nece observed a transition between laminar flow with 
separate boundary layers on each surface (Regime II) and 
turbulent, separate boundary layers (Regime IV). At high 
Reynolds numbers (Re> 80,000), our measurements match 
Daily and Nece within 7 percent; however at low Reynolds 
numbers our measurements are significantly higher than those 
of Daily and Nece. In fact, as is shown by the dashed line in 
Fig. 4, the present data follow a Re ' trend for Re<40,000, 
corresponding to laminar merged boundary layers (Regime I), 
rather than the Re"1 / 2 trend Daily and Nece observed (Regime 
II). 

The discrepancies between the experimental results of Daily 
and Nece (1960) and our study may be attributed to geometric 
differences between the two experimental apparatuses. Daily 
and Nece had a tip clearance ratio (a/R) of 0.00637, which is 
significantly smaller than the 0.015 value of the present study. 
In addition, the ratio of hub to disk diameter is 0.39 for the 
present study, while Daily and Nece's ratio is 0.10. The greater 
blockage in the gap between the disk and housing caused by 
the larger diameter hub should influence the boundary layer 
development, and hence, the sensitivity of moment coefficient 
to Reynolds number. 

The single disk experiments were repeated with larger tip 
clearance ratios of a/R = 0.031 and 0.077. Increasing the 
clearance between the single disk and the shroud increased 
torque a very slight amount. For H/R = 0.024 and 0.097, 
increasing a/R from 0.015 to 0.077 increased the moment 
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Fig. 4 Moment coefficient data and correlation for the single disk as 
a function of Reynolds number. (Uncertainty at Re = 80,000 in 
Cm= ±1.310" 3 , in Re=±240and at Re = 280,000 in Cm= ±1.1 -lO"4, 
in Re= ±840.) 

coefficient by 2 to 3 percent, while the effect is less than one 
percent in the case where H/R = 0.195. 

All moment coefficient data for the single disk collapse at 
high Reynolds numbers if they are scaled by (H/R)005, as 
shown in Fig. 4. For Res80,000, which is the range of most 
accurate data measurements, the moment coefficient varies 
logarithmically with Reynolds number. Neglecting the effects 
of tip clearance ratio, which was shown above to be a small 
effect, a correlation was developed for moment coefficient in 
this Reynolds number range. 

Cm= 2.83Re--48(///7?)05 (3) 

This correlation fits the data for 80,000 < Re < 280,000 with a 
standard deviation of 2 percent. 

Multiple Disks. The total torque on a stack of N disks is 
due to the frictional resistance generated by the air in the two 
shear gaps (i.e., the gaps between the shroud and the top and 
bottom disks) as well as by the air in the (7V-1) gaps between 
corotating disks. If we neglect any interactions between the 
corotating gaps and the shear gaps, the torque generated by 
each corotating gap, Tiap, can be found by subtracting the 
torque of the single disk case (which has only shear gaps) from 
a multiple disk case and dividing by the number of corotating 
gaps. 

This procedure was applied to both the 3 and 5 disk-stack 
data, and in all cases, the same gap-torque was calculated 
within experimental uncertainty. The results presented for gap 
torque are based on the 5-disk-stack case; 

Tgap = (Ts-T,)/4 (4) 

since this case should have the lower experimental uncertainty. 
Typical corotating gap torques are approximately one half the 
magnitude of the single disk torque. 

The moment coefficient based on gap torque (Cm gap) was 
calculated as a function of Reynolds number for all gap aspect 
ratios and tip clearance ratios tested. Figure 5 shows the results 
and a correlation over the valid Reynolds number range of 
80,000 < Re < 280,000 

Cm gap = 0.46Re- 3 5( Jf7/ i?)°V^)" 0 0 7 (5) 
(The data for H/R = 0.024 and a/R = 0.077 were not used 
in defining the correlation due to probable experimental er
rors.) Note the larger coefficient on H/R in Eq. (5) (0.5) com
pared to Eq. (3) for the single disk case (0.05). This indicates 
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Fig. 5 Gap moment coefficient data and correlation as a function of 
Reynolds number. (Uncertainty at Re = 80,000 in Cm= ±1.3-10~3, in 
Re=±240and at Re = 280,000 in Cm= ±1.1 -10"", in Re= ±840.) 

a greater sensitivity of the corotating gap torque to gap aspect 
ratio compared to the shear-flow gaps of the single disk case. 

Equation (5) also shows a sensitivity to tip clearance, which 
was neglected in the correlation for the single disk. For the 
two largest gap spacings, H/R = 0.195 and 0.097, the effect 
of increasing the tip clearance from a/R = 0.015 to 0.077 is 
to decrease the gap torque by 10 percent. This effect is not as 
distinct in the smallest axial spacing case (H/R - 0.024) due 
to the greater sensitivity to experimental uncertainties at the 
lower magnitudes of moment coefficient. It should be noted 
that this trend for torque as a function of tip clearance en
countered in the corotating gap flow is opposite to that seen 
in the single disk case, where increases in gap clearance led to 
small increases in gap torque. This is a subtle effect, and is 
observed at the limit of the uncertainty of our measurements 
for the single disk cases. 

The torque on multiple disk stacks of N disks can be cal
culated by combining the moment coefficients for the single 
disk case and for the corotating gaps: 

(6) •'m t o t a l - ^ m single disk "i™ U * ^t^m 

Obstructed Disk Flow. The protrusion of read/write arms 
into the gaps between rotating disks will increase the torque 
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Single disk moment coefficients; (o) Gap moment coefficients. (Uncer
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280,000 in Cm= ±1.1-10-", in Re= ±840.) 

of the system due to the frictional and pressure forces acting 
on the arms, as well as by changes in the flow patterns that 
alter the shear forces acting on the disk surfaces. Torque meas
urements were obtained with and without arms present in a 1 
and 3 disk stack with a gap ratio of 0.195 and a tip clearance 
ratio of 0.015. The arm blockage ratio, B, was 0.5. Torque 
was measured at three arm positions: R* = 0.93 (outermost 
position),/?* = 0.74 and/?* = 0.54 (innermost position). For 
the single disk rotating at 9400 rpm, the torque increased by 
7,16, and 24 percent over the unobstructed value when arms 
were present at R* = 0.93, 0.74, and 0.54, respectively. The 
stack of 3 disks was more sensitive to the presence of the arms 
since its torque at 9400 rpm increased by 20, 58, and 82 percent 
as the arms were moved inward. 

The greater sensitivity of the multiple disk stack to the pres
ence of the arms suggest that the contributions to the total 
torque by the corotating gaps is significantly altered by the 
obstructions. Gap torque calculations, in this case defined as: 

Tw = (T3-T<)/2 (7) 

show that the corotating gap torque approaches that of the 
single disk as the arms protrude into the gap. The ratio of 
corotating gap torque to single disk (shear-flow gap) torque 
increases from 0.45 in the unobstructed case to 0.89 in the case 
where R* = 0.54. 

The torque moment results for the fully obstructed case, 
i.e., when the arm is fully inserted into the gap (R* = 0.54), 
are shown in Fig. 6(a) and 6(b) for a single disk and for the 
corotating gap, respectively. For the single disk in the fully 
obstructed configuration, the data correlation is 

C,„=1.51Re 

and for a corotating gap, 

M(H/R)m BA 

C,„gap=1.95Re •35(H/R)-2B3 

(8) 

(9) 

(Note that these correlations reflect estimates of the depend
ence of moment coefficients on H/R and B since only two 

values of aspect ratio and blockage were tested for the fully 
obstructed case.) 

The effect of aspect ratio (H/R) on torque seems to be 
weaker in the fully obstructed cases (where R* = 0.54) than 
in the unobstructed cases, as evidenced by the smaller coef
ficients on H/R in Eqs. (8) and (9) compared to Eqs. (3) and 
(5) that represent the unobstructed data. Also note that the 
effect of the blockage ratio is more pronounced than that of 
aspect ratio, for both the single and corotating cases. 

For multiple disk configurations, Eq. (6) can be used to 
compute the total torque. Agreement between the multiple disk 
torque data and the torque predicted using Eqs. (6), (8), and 
(9) is within 2.3 percent. 

The torque experienced by a disk stack with arms at inter
mediate positions can be estimated once the torque is known 
for the unobstructed and the fully obstructed cases. A com
posite torque (Tcomp) can be estimated by assuming 1) the region 
of the disk adjacent to the arm is subjected to the same shear 
stresses as in the fully obstructed case; and 2) the region of 
the disk where r<RMm is subjected to the same shear stress as 
in the unobstructed case. The resulting expression for moment 
coefficient of a disk stack with arms protruding a distance R* 
into the stack is: 

Ĉ m comp= C /̂H unobstructed^ / ' ^m obstructed!^ v " / / \*") 

where Cm unobstructed is the moment coefficient of the stack of 
disks without arms present, estimated using Eqs. (3), (5), and 
(6), and Cm obstructed is t r ie moment coefficient of the stack of 
disks with arms present, estimated using Eqs. (8), (9) and (6). 
(For details of the derivation of Eq. (10), see Hudson, 1989). 

Comparison of the intermediate arm position data with the 
composite moment coefficients calculated in the manner de
scribed above shows a standard deviation of 2.6 percent and 
average error of less than 0.5 percent at the intermediate arm 
positions, suggesting that combining the unobstructed and fully 
obstructed data in this manner is adequate to describe the 
results within experimental uncertainty. 

Viscous Dissipation. Once the torque of a disk stack is 
known, the total viscous dissipation that occurs within its hous
ing can be determined. The power required to rotate the disks 
compensates for the viscous losses of the air, which are dis
sipated as heat. Total viscous dissipation is found from 

Pd=Tiolu (11) 

where Ttot is the total torque for the disk drive. 
For the four-disk configuration studied by Eibeck et al. 

(1989), calculations based on the correlations in the present 
paper reveal total viscous dissipation of 0.4 W for a speed of 
1850 rpm and 2.9 W for a speed of 4000 rpm. Based on 
measurements by Eibeck et al. (1989) of the total power input 
to the disk-drive, which is all eventually dissipated as heat in 
one form or another, the viscous dissipation accounts for only 
5 percent of the total thermal load for 1850 rpm and for 30 
percent of the total thermal load for 4000 rpm. The greater 
importance of viscous dissipation at higher speeds demon
strates the need for accurate predictions of dissipation. 

Summary 
' Shroud torque measurements were made in a simulated disk 

drive consisting of a single and multiple corotating disk stacks 
enclosed in an axisymmetric housing. The effects of rotational 
rate, axial and radial spacing, and the position and thickness 
of simulated read/write arms between disks were evaluated. 
Correlations were developed based on the experimental data 
for disk Reynolds numbers between 80,000 and 280,000. 

The results indicated the following trends: 
1. For a single disk without arms present, the correlation 

for moment coefficient is: 
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C„, = 2.83Re -48(////?)05 (12) 

2. The moment coefficient generated within a single coro-
tating gap in a stack of multiple corotating disks without arms 
present is: 

Cm gap = 0.46Re •ls(H/R)os(a/Ry (13) 

3. For the single rotating disk with a read/write arm in the 
fully obstructed position, the moment coefficient correlation 
is: 

Cm = l.5lRe^A\H/R)mBA6 (14) 

4. For a corotating gap in a stack of disks with a read/write 
arm at the fully obstructed position, the moment coefficient 
correlation is: 

Cm g a p= 1.95Re--35(///i?)-25-3 (15) 

Relationships are presented to estimate the total moment 
coefficient and viscous dissipation for multiple disk stacks with 
read/write arms present and with arms at any radial position, 
based on these correlations. 
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Air Test Flow Analysis of the 
Hydrogen Pump of Vulcain 
Rocket Engine 
Within the framework of the technological development of the VULCAIN rocket 
engine (Ariane V European project), initiated by the Centre National d'Etudes 
Spatiales (CNES) for the Agence Spatiale Europeenne (ESA), the Societe Euro
peenne de Propulsion (SEP) is in charge of the design and building of the liquid 
hydrogen turbopump. In order to characterize the hydraulic performance of the 
pump, an air test facility reproducing the pump geometry was built by SEP and 
fitted in the Laboratoire de Mecanique des Fluides et d'Acoustique of the Ecole 
Centrale de Lyon. Benefits and disadvantages of air tests of hydraulic pumps are 
discussed. The pump is composed of three stages. The first one is an axial inducer 
stage. The second and third ones are centrifugal stages with vaned diffusers and are 
separated by a U bend and a vaned return channel. Results of the first measurement 
campaign are presented. They consist of overall pressure, wall static pressure and 
velocity measurements. Local quantities (velocity triangle, pressure) and mean quan
tities (pressure rise, losses, efficiency) are given. Recirculating and wake flow anal
ysis are included. The goals of the study are the understanding of the flow behavior 
and the improvement of the prediction methods. Predicted and measured quantities 
(losses, efficiency, kinetic momentum) are compared. The hydrogen performances 
are deduced, they agree with the specified performances of the pump. This validation 
is one of the main results achieved. 

Introduction 
The Vulcain engine hydrogen pump input power is 11,000 

Kw. The rotation speed is 34,000 rpm. The turbopump mass 
is 240 Kg. Liquid hydrogen inlet temperature is 21 K (Thevenot 
and Borromee, 1988). To test and improve the design of such 
a pump, a cheap and simple way is to use a specially designed 
air test facility. For similar reasons Gorton and Lakshminar-
ayana (1980) have developed air measurements of a model of 
an SSME inducer. Detailed measurements have been obtained 
in the rotating frame of the blade channels, showing a complex 
flow pattern: strong developments of 3-D viscous flow were 
observed (Lakshminarayana, 1982). It is related to the inducer 
axial geometries associated with moderate specific speed values 
such as 0.9 generally applied to helicocentrifugal impellers. 

The idea of testing hydraulic machinery on air is not new 
and can be credited to Prandtl. Comparison of air and hy
draulic (LOx, LH2) test results made by authors such as King 
(1968) shows a good agreement. 

In our experiment the whole pump has been tested with air. 
The main objective applying to pump air tests are the following. 

• The Reynolds numbers are quite different: 
ReLH2~200.Reair. 

This is related to the large difference in kinematic viscosity 
of the LH2 and air fluids (vaiI/vLlil = 95). Therefore, Reynolds 

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
May 15, 1989. 

numbers for air and LH2 cannot be matched between the LH2 
turbopump and air test rig. The rotational speed of the test 
rig was chosen large enough to ensure a weak dependence of 
the wall friction coefficient on Reynolds number. 

• The fluid compression between air and LH2 will be dif
ferent: air outlet/inlet density ratio is 1.14 in air test conditions 
to compare with 1.06 in liquid hydrogen. So the viscous flows 
will be different with a tendency to stall more pronounced in 
air. For a given inlet pump flow coefficient the various pump 
components will operate at slightly different flow coefficients 
between air and LH2. 

Nevertheless the Vulcain hydrogen pump development logic 
was organized as follows: 

• hydrogen and air flow computations (KATSANIS meri
dional through flow method and nondimensional energy 
loss model) 

s air test facility design. 
8 computed and measured performances comparison in air 

and energy loss prediction models checking. 
8 water test facility design and inducer cavitation test run 

(Desclaux et al., 1988). 
8 cavitation model checking. 
8 hydrogen turbopump testing in LH2. 
Air test measurements have been used to validate the flow 

angle deviation and energy loss models. The hydrogen pump 
performances have then been estimated. 
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, MAIN PROBE MEASUREMENT STATIONS 

Fig. 1 Experimental setup 

Experimental Set-Up 
The experimental set-up for the three stage pump is shown 

in Fig. 1. The first axial stage is composed of a tandem blade 
row inducer (1, 2).1 The stagger of the first inducer (1) with 4 
unshrouded blades, relative to the second blade row (2) with 
12 shrouded blades, can be changed to study its overall per
formance influence. The following stator (3) has 13 blades. 
The first centrifugal stage has a shrouded impeller (4) with 6 
blades and 6 splitters, and a vaned diffuser (5) of 11 blades. 
It is followed by a 180 degree U-bend and a vaned return 
channel (6) of 11 blades. The last stage has a centrifugal 
shrouded impeller (7) similar to the first centrifugal stage one 
and a vaned diffuser (8) of 13 blades. 

The stagger of the first centrifugal diffuser blades relatively 
to the return channel blades, and the stagger of the second 
centrifugal diffuser blades relatively to the volute tongue can 
be changed by rotating (5) and (8). One hundred static pressure 
measurements are possible. The number of probe locations is 
25 (see Fig. 1). Probe measurements at different azimuthal 
locations at axial stator exit (3) can be done by rotating part 
(9). Similarly, probe measurements at the first centrifugal dif
fuser inlet and outlet can be done by rotating part (5) and (10) 
on which probe equipment is installed. A cut-away drawing 
of the pump is presented in Fig. 2. 

Test Rig 
The test rig is composed of an 18 Kw direct current electric 

motor fixed on a 1,800 Kg steel frame mounted on silent blocks. 
A gearbox of 3.5 velocity ratio and a torque/speed meter are 

Fig. 2 Pump cut-away drawing 

Table 1 

MEASUREMENT 

V 

P\ 

Ps 

wall static 
pressure Ps 

o^/3 

R 

SENSOR 

3cc5hole 
probe 

n 

n 

pressure 
taps 

3or5hde 
probe 

ACCURACY 

1 % 

05% 

05% 

Q5% 

±05° 

+ 0.0001m 

1 Numbers in parenthesis designate mechanical parts of the pump (see Fig. 1). 

connected to the motor. An electronic speed variator allows 
rotating speed control. The high speed shaft connected to the 
experimental set-up has a maximum speed of 10,800 rpm and 
is secured by calibrated shear-pins. The experimental set-up 
air intake is composed of a filter, a honeycomb structure, a 
convergent and a straight pipe. A Venturi flowmeter designed 
for nominal flow rate is placed on the exit line upstream of a 
needle-valve used to adjust the operating point. The air warmed 
in the set-up is ejected outside. 

Measurements and Data Acquisition 
The test rig safety measurements are acquired and processed 

by a Hewlett Packard acquisition system and a microcomputer. 
Alarms and stop signals can be adjusted. A separate computer 
takes care of the data acquisition. Static pressure fields are 
acquired separately using a scanivalve system. Probe meas
urement is done semi-automatically for better acquisition in 
large gradient areas. Temperature, 3 hole pressure and 5 hole 
pressure probes are used to obtain an accurate flow picture. 
Typical data accuracy and measurement equipment are shown 
in Table 1. 

Nomenclature 
tively to meridional plan 

cP = 
ms = 
Ps = 
p, = 
R = 

Re = 

U = 
V = 

Vu = 

W = 
a = 

static pressure coefficient 
mass flow rate 
static pressure 
stagnation pressure 
radius 
Reynolds number for inducer 
tip diameter Re = 2 o>R2/v 
rotational speed U=R <D 
absolute velocity 
tangential velocity 
(sgn(Ku) = sgn(C/)) 
relative velocity 
absolute velocity angle rela-

0 

A( ) 
<t> 

t 
V 
P 
CO 

(sgn(a) = sgn(K«)) 
= relative velocity angle rela

tively to meridional plan 
(sgn(P) = sgn(Vu-U)) 

= for a difference 
= mass flow coefficient at the 

pump inlet </> = 
ms/irpoca(Rf-Rl)R, 

= stagnation pressure coefficient 
^ = APT/p0o>2R2 

= isentropic efficiency 
= fluid density 
= angular rotational speed 

V 

Subst 
h 

N 
t 

TH 

0 
1 
2 

( ) 

a> = loss coefficient to = APT/h 

PV2 

fluid kinematic viscosity 

inducer hub 
for nominal flow rate 
inducer inlet tip 
for theoretical (computed) 
value 
upstream of the pump 
upstream of element 
downstream of element 
mass averaged quantity. 

Journal of Fluids Engineering DECEMBER 1991, Vol. 113 / 655 

Downloaded 02 Jun 2010 to 171.66.16.104. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Y/r„, 

1.1 

1.0 

0.9 

Q8 

0.7 

06 

1% 

1.0 

0.9 

08 

0.7 

0.6 

Q5 

1.0 

Fig. 3 Overall pump performance In air 

Fig. 4 Comparison between required and deduced from air test meas
urements LH2 characteristics 

Measurement Process 
Measurements at each station are done with straight three 

hole probes fitted to near-shroud measurements, and with five 
hole cobra probes adapted to near-hub measurements. Reli
ability is demonstrated when measurements at mid-height with 
the two types of probes give the same values. The density is 
obtained by preliminary pressure and temperature measure
ments with a thermocouple probe. The mass flow rate was 
calculated from the probe measurements and was compared 
with the Venturi mass flow; this allows to decide the probe 
measurement validity. 

Description and Analysis of Measurement Results 

Pump Overall Quantities. The measured quantities are re
ferred to nominal operating conditions with the subscript N 
in Fig. 3 or to theoretical nominal values with the subscript 
THN. Every parameter presented in Figs. 4, 5, 8(6), 10, and 
11 (ft) are dimensionless in regard to a corresponding value 
calculated at nominal design conditions. 

Air test stagnation pressure rise, mass flow characteristic 
are shown in Fig. 3. No hysteresis has been observed on the 
full measurement range. The head rise curve shows a contin
uous decrease with flow rate increase on the operating range 
from 0.7 to 1.1 <j>N. 

Stability problems are not expected. Maximum pump is-
entropic efficiency is reached at the nominal flow rate condition 
(see Fig. 3). It has been deduced from stagnation temperature 
measurements. 

LH2 Pump Performance Prediction. The stagnation pres
sure characteristic is deduced for LH2 from air test measure
ments applying the following method: The air density is 
calculated from pressure and temperature measurements at 
each pump element inlet and for different flow rates. The static 
pressure coefficient can then be obtained versus the flow coef
ficient for each pump element using wall static pressure meas
urements. 
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Fig. 5(a) First blade row, second blade row and stage efficiencies 
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Fig. 5(b) Stator losses and kinetic momentum 

Fig. 5 Inducer stage performance in air. 

The LH2 density is estimated using the meridional compu
tation. The flow coefficient of each element operating in hy
drogen is calculated for a given LH2 mass flow rate. We 
compute the corresponding static pressure rise for air for every 
element assuming the dimensionless characteristic of each ele
ment is similar in air and LH2. Then we use similarity laws 
and LH2 density distribution to predict LH2 static pressure rise 
for every element. The resulting overall stagnation pressure 
rise for a given LH2 mass flow rate is the sum of the LH2 static 
pressure rises and average exit velocity head rise. 

The physical hypotheses of this method are mainly the fol
lowing: the losses and deviation are not or weakly dependent 
on Reynolds number and the air and LH2 compressibility ef
fects are not so much different to induce strong differences in 
velocity distributions. The choice of the rotational speed has 
been made according to these two points. 

It can be seen from Fig. 4 that the required performance 
will be reached in the operating range. 

The comparison between test data and theoretical calculated 
values is in a good agreement from 0.7 to 1.1 <j>N. However, 
the measured characteristic becomes steeper as flow rate in
creases. This is related to the inducer behavior. 

656 / Vol. 113, DECEMBER 1991 Transactions of the ASME 

Downloaded 02 Jun 2010 to 171.66.16.104. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



W2/W1 oCCO 

140 

Fig. 6 Tandem inducer relative velocity deceleration (outlet/inlet rela
tive velocity ratio (W2/W,) 
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Fig. 7 Deviation angle at exit of tandem inducer versus incidence angle 
at leading edge 
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Fig. 8(a) Inducer probe measurements for various flow conditions. Inlet 
absolute angle measurements. 
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Fig. 8(b) Inducer probe measurements for various flow conditions. First 
blade row outlet relative angle 

Inducer Overall Behavior. The tandem inducer overall per
formances are presented in Fig. 5. 

The predicted performances are obtained with the help of 
a meridional and blade to blade inviscid method (KATSANIS) 
and a monodimensional en3rgy loss model. The same method 
has been applied to the centrifugal stages. The first row, second 
row and tandem blade row efficiencies have been slightly un
der-estimated at nominal flow rate (Fig. 5(a)). The stator losses 
have been under-estimated (Fig. 5(b)). The resulting overall 
stage efficiency reaches the anticipated value. The strong de
crease of the first row efficiency with increasing mass flow rate 
must be pointed out. The inducer first blade row is very sen
sitive to fluid incidence angle, blade loading decreasing strongly 
with increasing flow rate. It can be illustrated by the mean 
kinetic momentum A(R Vu) in Fig. 5(b). Besides, the first blade 
row has a large blade chord length leading to friction losses 
depending strongly on flow rate. The combination of reducing 
work and increasing energy loss brings an efficiency decrease 
with increasing flow rate. 

Inducer Relative Velocity Analysis. The classical quasi ...iree 
dimensional analysis of the flow used for axial pumps and 
compressors with short chord blades and high solidities is not 
sufficient to characterize the inducer blade channel flow. 
Nevertheless, we present the tandem inducer outlet/inlet ve

locity ratio W2/Wi in Fig. 6 as a function of flow coefficient. 
It can be seen that the W2/W1 ratio is larger at blade hub than 
near the tip and more sensitive to flow rate coefficient. This 
is related to the high blade loading at the periphery. 

The outlet deviation angle A/32 is presented in Fig. 7 as a 
function of incidence angle A/?, for various radial locations. 
A/32 is a slip angle relatively to the second blade row pressure 
side exit. The incidence angle A ^ is the difference between the 
relative flow angle and the first blade row leading edge pressure 
side angle. It can be pointed out that blade tip incidence angles 
stay small and that deviation angles reach maximum values. 

Inducer Detailed Flow Analysis. The analysis of the in
ducer inlet probe measurements shows evidence of an existing 
recirculation at the periphery for low flow rate. The absolute 
fluid angle a variation at the inducer first row inlet shows the 
occurrence of a recirculation in Fig. 8(a). Correlatively the 
static pressure measurements on the casing show the appear
ance of that recirculated flow at low flow rate. When the mass 
flow decreases, the static pressure immediately upstream of 
the inducer becomes higher than the upstream static pressure. 
The recirculation extends far upstream, the first static pressure 
tap being located more than one axial chord upstream of the 
leading edge (see Fig. 9). That higher pressure nearer to the 
inducer can be attributed to the centrifugal forces caused by 
the velocity tangential component. 
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Fig. 9 Wall static pressure fields for the first inducer row 
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Fig. 10(a) Impeller and stage efficiencies 

Between the two blade rows the relative angle measurements 
show no dependency on flow rate coefficient (see Fig. 8(b)). 

First Centrifugal Stage Overall Behavior. The efficiencies 
at nominal mass flow rate have been slightly over-estimated 
for the impeller and for the whole stage as shown by Fig. 10(a). 
The centrifugal diffuser losses are well predicted at nominal 
flow rate (see Fig. 10(6)). The kinetic momentum rise from 
inlet to outlet of the impeller is slightly under-estimated (Fig. 
10(b)). 

Diffuser and U-Bend Detailed Flow Analysis. A complete 
picture of the loss distribution at the diffuser exit is given in 
Fig. 11(a) for the mass flow rate coefficient 0= 1.038 <j)N. The 
probe measurements were realized at the exit of the diffuser 
at the same radius but with different azimuthal angles. A 
minimum of 7 probe measurements was necessary to build that 
blade to blade distribution. The blades, shown in Fig. 2, are 
thick, for this reason, there is an important curvature at the 
end of the pressure side. There exists a loss region near the 
pressure side, this is related to the trailing edge curvature which 
induces a decelerating flow at the pressure side. The local losses 
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Fig. 10 First centrifugal stage performance in air 
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Fig. 11 Flow at the exit of the first diffuser at nominal flow rate 

are divided by a mean diffuser loss averaged relatively to local 
mass flow. A low loss area is located near the blade exit suction 
side. Near the casing (shroud side) strong loss gradients are 
related to a recirculating flow region. The complete picture 
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Fig. 12 Wall static pressure field in the U-bend behind the first cen
trifugal stage diffuser. Iso pressure coefficient Cp (two gaps). Cp 

= Ps-Psmini'1/2pl/^(Psmini and 1/2pi/2 are the minimum static pressure 
and the mean dynamic pressure at the inducer exit radius Rml„, flmM is 
the maximum radius of the U-bend wall) 

acquired at the diffuser inlet by various azimuthal position 
probe measurements allows us to say that the recirculation 
observed has started inside the diffuser. No recirculation was 
observed at the impeller exit for this flow coefficient. Besides 
the energy loss distribution, the absolute angle distribution 
clearly brings into light the recirculating area (Fig. 11(b)). 

In the vaneless diffuser part and in the U-bend channel the 
wall static pressure distribution is measured on the casing by 
rotating part (10) (equipped with 10 static pressure taps at 
various radii) relatively to the diffuser (5) for a minimum of 
7 stagger angles. The picture obtained shows the existence of 
strong azimuthal gradients at the diffuser exit (Fig. 12). These 
gradients tend to disappear in the U-bend as the flow diffusion 
increases. It should result that no strong dependency of the 
vaned return channel performance with respect to the relative 
stagger angle of the diffuser (5) and the return channel blades 
(6) will be observed. 

In other words, the diffuser exit wakes will not exist any
more at the return channel blade leading edge. These assump
tions have been experimentally confirmed. 

Conclusion 
The measurements performed on an air test facility have 

been used to characterize the VULCAIN liquid hydrogen pump 
performance and flow picture. The head rise/mass flow rate 
characteristic does not show hysteresis in the full measurement 
range. The hydrogen pump performance calculated from air 
test results are in good agreement with the required perform
ance. The head rise/flow rate characteristic trend is well pre
dicted on the 0.7'to 1.1 4>N operating flow coefficient range. 
Performance of the various components are generally well 
predicted at nominal mass flow rate. Nevertheless the meas
urements have shown the necessity to develop the effort ini
tiated to understand the pump flow patterns, particularly in 
the inducer axial stage. 

The first experimental results obtained at real conditions on 
the new SEP PF52 LH2/LOX test rig confirm the good be
havior of the turbopump in liquid hydrogen. 
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LDV Measurements and 
Investigation of Flow Field 
Through Radial Turbine Guide 
Vanes 
The results of LDV measurements and investigation of the detailed flow field in a 
radial inflow turbine nozzle are presented. The flow velocities were measured at 
upstream, inside and downstream of the nozzle blades for two different mass flow 
rates, using a three-component LDV system. Results are presented as contour plots 
of mean velocities, flow angles, and turbulence intensities. The flow field inside the 
nozzle blade passages was found to be influenced by the upstream scroll geometry. 
The flow turbulence increased in the downstream flow direction. The LDV mean 
flow results on the blade-to-blade midspan plane which is parallel to the end walls 
were also compared with an inviscid, "panel method" solution. 

Introduction 
In recent years, radial inflow turbines are finding a wide 

range of applications due to their ease of manufacture, low 
cost, and high efficiency. These benefits are especially evident 
at low Reynolds numbers. Some examples of these applications 
are turbochargers in automotive vehicles and gas turbines in 
aircraft and spacecraft auxiliary power units. 

Recent efforts to improve the performance of radial inflow 
turbines concentrated on the development of computer pro
grams to determine the flow field through various components 
(Choo and Civinskas, 1985; Hamed et al., 1978). Since the 
actual flow is three-dimensional in radial Inflow turbines, and 
is complicated by the interaction between the scroll, nozzle 
and rotor, the need for reliable experimental data is of obvious 
importance. Tabakoff et al. (1983) obtained hot wire ane
mometer measurements in scrolls of different cross-sectional 
geometries that revealed the presence of two counter rotating 
vortices. Malak et al. (1986) measured the detailed flow field 
through a rectangular cross-section scroll using LDV. They 
observed only one vortex rather than the conventional two 
counter rotating vortices. The measured flow angle distribution 
at the scroll and nozzle exit displayed noticeable change es
pecially in the vicinity of the jargon. The turbulence stresses 
were also measured and the results showed that the turbulence 
is anisotropic. Khalil et al. (1976) presented maps of the meas
ured total pressure, Mach number and flow angles at the inlet 
and exit of a radial inflow vaned nozzle using wedge type 
pressure probes. The results were used to develop a theoretical 
model for loss prediction in both the vaned and the vaneless 
regions of the nozzle. The experimental results showed strong 
end wall cross flows and significant losses. Large mixing effects 
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were observed at the exit of the nozzle. Hashemi et al. (1984) 
presented the results of total and static pressure measurements 
using conventional pressure probes at three radii downstream 
of the radial nozzle cascades. They also conducted flow vis
ualizations in the air and water test rigs. These flow visual
izations show that the radial turbine nozzles have different 
secondary flows from the axial flow turbine cascades because 
of the radial pressure gradients and the incidence effects. Al
though they show the existence of the leading edge vortices, 
the passage vortices are either too weak or they do not exist. 
The shape of leading edge vortices depends strongly on the 
incidence angle. 

More extersive measurements are still needed in the radial 
turbine guide vanes, to provide a better understanding of the 
evolution of the three-dimensionai flow and to serve as data 
base for validating the three-dimensional flow solutions. The 
errors introduced by the measuring probes can be significant 
inside the radial turbine guide vanes because of the small flow 
passages, and their correction is very difficult due to the high 
velocity gradients in the proximity of the walls. The nonin-
strusive, LDV and other laser velocimetry measuring tech
niques avoid these difficulties. 

This paper presents the results of an experimental study 
conducted to obtain 3-D flow measurements through the guide 
vanes of a radial inflow turbine using a three-component LDV 
system. The same test rig, whose scro'l flow field was inves
tigated by Malak et al. (1986) was used at the same test con
ditions for the experiments. LDV measurements were obtained 
at five stations which are upstream, inside the blade passage 
and downstream of the cascade. Data were presented as con
tour plots of mean velocity, flow angle and turbulence inten
sity. LDV measurements were repeated upstream and 
downstream of the cascade at a higher mass flow rate. The 
experimental mean flow results on the blade-to-blade midspan 
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plane which is parallel to the end walls were compared with 
the inviscid, "panel method" solution to reveal the three-
dimensional and viscous effects. 

Experimental Configuration 
The experimental configuration is shown schematically in 

Fig. 1. It consists of the test turbine, the seeding particle at
omizer, the LDV optical and data acquisition systems. 

Test Rig. Figure 2 shows the schematic of the experimental 
turbine. The turbine scroll has a cross-sectional area/radius 
ratio of 3 8.69 mm at the inlet. This value varies to30.1, 17.14, 
8.71, and 0 mm as the circumferential angle </> shown in Fig. 
2 changes to 90, 180, 270, and 360 degrees, respectively. The 
scroll has an initial height/width ratio of 0.964. This value 
gradually increases and the height/width ratio reaches 1.105 
maximum. It then decreases to 0.878 at <j> = 315 deg. Therefore, 
the scroll has nearly a square cross-section over most of the 
circumference. It is also unsymmetric, since the flow leaves 
the scroll through a flow channel located at one corner of the 
cross section as shown in Fig. 2. The details of the scroll 
geometry can be found in reference by Malak et al. (1986). 
The unsymmetric scroll cross-section location relative to the 
nozzle is such that one side of the square cross-section lines 
up with one of the nozzle end walls. This wall is made of 6.35 
mm (0.25 in.), thick plexiglass, through which the LDV meas
urements were obtained. The nozzle end walls are parallel and 
are 12.7 mm (0.5 in.) apart. The outer radius of the nozzle is 
137.3 mm (5.41 in.) with a vaneless region followed by nozzle 
vanes between 112 mm (4.41 in.) and 85 mm (3.35 in.) radii. 
There are eighteen slightly cambered nozzle vanes. The vane 
chord length is 50 mm (1.97 in.). The solidity based on the 
pitch at the trailing edge is 1.685, and the aspect ratio is 0.254. 
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Table 1 Passage geometry 

CROSS-SECTIOH A-A 

Fig. 2 Schematic showing the experimental turbine configuration 

The geometric characteristics of the passage are summarized 
in Table 1. The rotor was not using during the tests, but instead, 
an aluminum body of revolution was installed to provide a 
smooth, continuous flow path downstream of the nozzle. The 
rotor will be included in the future measurement of this ex
perimental program, and the effect of rotor on the nozzle flow 
field will be investigated by comparing the future results with 
the results of this paper. 

The nondimensional specific speed (Ns), loading coefficient 
(\p) and flow coefficient (<£) are estimated to be 0.069, 4.78, 
and 0.072, respectively for an assumed rotor rpm of 10,000, 
although the rotor was not installed during the experiments. 
These conditions correspond to a much lower flow rate, rpm 
and turbine inlet temperature as compared to those in practical 
applications. However, the present study focuses on the un
derstanding of some of the fundamental flow mechanisms 
rather than a detailed loss and performance analysis at design 
conditions. 

Inlet radius 
Exit radius 
Chord length, c 
Radial chord length, cr 
Blade height, h 
Pitch (in degrees) 
Solidity, c/s (based on exit pitch length) 
Aspect ratio, h/c 
Leading edge radius _ 
Trailing edge radius 
Number of blades, N 
Inlet blade angle with tangential, 0, 
Exit blade angle with tangential, /32 

112 mm (4.41 in.) 
85'mm (3.35 in.) 
50 mm (1.97 in.) 
27 mm (1.06 in.) 
12.7 mm (0.50 in.) 
20° 
1.685 
0.254 
2.59 mm (0.102 in.) 
0.813 mm (0.032 in.) 
18 
80° 
11° 

Table 2 LDV characteristics 
Purple Blue Green 

Wavelength, X Gun) 0.4765 0.488 0.5145 
Fringe Spacing (^m) 2.784 2.851 3.0 
Diameter of measuring 
volume at e~2 intensity 
location (mm) 0.052 0.053 0.056 
Length of measuring 
volume at e~2 intensity 
location (mm) 0.603 0.617 0.651 
Number of stationary 
fringes 19 19 19 

the beam splitters and the collecting optics to reduce fringe 
bias and to determine the flow direction. The beam expanders 
reduce the measuring volume diameter 3.75 times, and there
fore considerably increase the spatial resolution. They improve 
the signal-to-noise ratio 50 times. The focal length of the trans
mitting lenses is 480 mm. The crossing angle for the 1.5 mm 
diameter beams if 9.82 degrees. The characteristics of the LDV 
optics are listed in Table 2. Further information on various 
components of the LDV system can be found in TSI manuals. 

The laser and optical systems for the three component LDV 
were mounted on a milling machine table which can traverse 
254 mm (10 in.) in the axial, 457.2 mm (18 in.) in the transverse 
and 558.8 mm (22 in.) in the vertical directions. 

Flow Seeding. A TSI six-jet atomizer was used to seed the 
flow with two micrometers mean diameter propylene glycol 
particles at 105 Particles/cm3. The atomizer was connected to 
the bottom of the settling chamber through a 31.75 mm (1.25 
in.) flexible tube as shown in Fig. 1. 

Laser and Optics. The three component LDV system used 
to measure the velocity of the flow through the nozzle vanes 
is shown in Fig. 1. A five Watt argon-ion Spectra Physics, 
model 164-09 laser was used as the light source. The laser beam 
leaving the tube is separated into components with different 
wavelengths in the dispersion prism. The first three beams with 
the highest intensity are used to measure the three velocity 
components. These beams have 0.5145, 0.488 and 0.4765 mi
crometer wavelengths and correspondingly, green, blue, and 
purple colors. The first two are sent through the optical train 
in the axial direction, while the third beam passes through a 
second train whose beam expander and focusing lens were 
inclined 30 degrees to the axial direction. Each beam is po
larized through the polarization rotator and split into two equal 
intensity components at the beam splitter. The six beams cross 
at one common measuring volume, with three sets of fringes 
for the three different colors. The blue and the green colors 
are used to measure two orthogonal velocity components in 
the plane perpendicular to the optical axis. The purple color 
is used to obtain a nonorthogonal velocity component out of 
this plane. The scattered light from the particles in the meas
uring volume is collected in the off-axis backward scatter mode 
to decrease wall flare. Frequency shifters are placed between 

Data Acquisition System. The LDV photodetector signals 
are processed in three TSI 1990 counter type signal processors. 
The processed data is transferred to an IBM PC/AT com
patible computer for further processing and data storage. In 
order to achieve the data transfer to the computer, a Metrabyte 
model CTM-05 counter-timer interface and three model PI012, 
24 bit parallel digital I/O (Input/Output) interfaces were in
stalled in the computer. The digital outputs of the three pro
cessors were connected to the PI012 I/O boards through 37 
pin D type connectors and flat cables. To provide the control 
of the data transfer, and the coincidence of data coming from 
three different channels, an external circuit was designed, man
ufactured and incorporated into the data acquisition system. 
A data acquisition program was developed in the Pascal lan
guage. This program utilizes the subroutines of the Quinn 
Curtis software package. "Turbo Pascal Data Acquisition and 
Control Tools for Metrabyte." 

Measuring Locations and Test Conditions. The LDV 
measurements were obtained mostly in the flow passage en
circled in Fig. 2, where the blockage of the laser beam is 
minimum. Figure 3 shows the passage geometry at a larger 
scale where the limiting vanes have leading edges at 135 and 
155 degrees, respectively, from the vertical in the clockwise 
direction. The five measurement stations are also shown in the 
same figure. They are located at 124 mm (4.88 in.), 110 mm 
(4.33 in.), 102 mm (4.01 in.), 90 mm (3.54 in.), and 83 mm 
(3.26 in.) radii from upstream to downstream. The first and 
fifth stations extend to the upstream and downstream of the 
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F r o n t W a l l 

Fig. 3 Schematic showing the LDV measurement planes for mass flow 
rate (rh) = 0.0907 kg/s 

preceeding passage. Data were taken at five spanwise locations 
at each circumferential position of a measurement station. 
These spanwise positions are 1 mm (0.04 in.), 2.5 mm (0.1 
in.), 4.5 mm (0.175 in.), 6.5 mm (0.25 in.), and 9 mm (0.35 
in.) from the front end wall surface of the radial turbine test 
rig. The experiments were performed at an air mass flow rate 
of 0.0907 kg/s (0.2 lb/s). The measurements at the upstream 
(radius = 124 mm) and downstream (radius = 83 mm) stations 
were repeated at a mass flow rate of 0.1361 kg/s (0.3 lb/s). 
The measurement stations for the higher mass flow rate (0.1361 
kg/s) experiments correspond to the stations 1 and 5 of Fig. 
3. Data were obtained at 600 points in total including both 
low and high mass flow rate measurements. 

Measuring Technique. The horizontal (blue) and vertical 
(green) components of velocity were measured directly by the 
LDV system. However, due to the inclined arrangement of the 
second train of the LDV optics (Fig. 4), the measured third 
component is nonorthogonal to the plane of the first two 
components. Then, the orthogonal on-axis component was 
calculated through a transformation relation. Referring to Fig. 
4, this relation is 

n,_V0Os8-VP 
sinf? (1) 

where Vb and Vp are the horizontal (blue) and nonorthogonal 
(purple) components of velocity, and 6 is the inclination angle 
between the two optical trains. The angle d was limited to 30 
deg by the geometry of the radial turbine test rig. Since the 
coincidence of the three velocity component measurements 
caused extremely long experiment times, the data were collected 
independently from the inclined LDV channel while the meas
urements from the other two orthogonal channels coincide. 
This resulted in inaccuracy of the computed variance of the 
on-axis velocity components through the transformation re
lation. 

Since the variance of the on-axis velocity component cannot 
be determined accurately, the turbulence intensity is calculated 
only in the plane parallel to the end walls of the guidevanes 

V" 

\ e 
_. \ 

--""""X'^ 

'''p 

1 1 

Fig. A Nonorthogonal arrangement of LDV third component 

using the variance of the two orthogonal velocity components. 
The relation used in the turbulence intensity calculations is 

Vo.5 (4« + 4-c) 
(2) 

where SyB and s\,G are the variances of the horizontal (blue) 
and vertical (green) velocity components, and Vex\s the passage 
averaged exit velocity. 

When the measurements were conducted near the end wall 
surfaces, the reflection of the laser beams reduced the signal 
to noise ratio considerably, and the noise levels exceeded the 
signal amplitude at very close measurement locations to the 
end walls. Because of the end wall reflection problem, the 
closest measurement locations to the walls were determined as 
1 mm (0.04 in.) from the plexiglass front end wall, and 3 mm 
(0.118 in.) from the back end wall, for the off-axis backward 
scatter technique. No wall reflection problems were encoun
tered in the measurements near the blade surfaces. The min
imum measurement distance from the blade surfaces was 
limited due to the blockage of the beams by the blades. It was 
possible to measure as close as 0.5 mm (0.0197 in.) from the 
blade surfaces when the measurement geometry was favorable. 

Typical data rates were about 50 data/s, although this num
ber changed considerably depending on the seeding droplet 
number density, reflections from the walls and the flow pas
sage. Signal to noise ratio was in general more than 6 in most 
of the measurement locations. However, near the back end 
wall, the results were accepted down to a signal-to-noise ratio 
of 3. 

Uncertainty Analysis. The uncertainty of the measured 
mean velocities were determined using the techniques described 
by Orloff et al. (1983) and Snyder et al. (1984). For 95 percent 
confidence level, these references related the measurement un
certainty interval to the sample size through the relation 

AC/= 
1.965c/ 

•\[N 
(3) 

where Su is an estimator for the true standard deviation, Nis 
the sample size, and the constant 1.96 corresponds to 95 percent 
confidence level. The uncertainties of the measured mean ve
locities increased with the flow turbulence in the downstream 
direction. The on-axis velocity component was calculated from 
the two independently measured velocity components using 
Eq. (1) as explained in the previous section. This equation has 
an amplifying effect on the standard deviation of the on-axis 
velocity component as demonstrated in references by Orloff 
et al. (1982) and Snyder et al. (1984). Therefore, the uncertainty 
of this component is significantly higher than the directly meas-
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Table 3 Measurement uncertainties (=F) 
Longitudinal, transverse, and vertical traverses 0.025 mm 
Optical axis or plexiglass surface angular position 0.5° 
Measuring location 0.3 mm 
Inlet transverse velocity (Blue), AU/Um 0.57% 
Inlet vertical velocity (Green), AV/V,„ 1.56% 
Inlet on-axis velocity (Blue & Purple), AW/W,„ . 14.3% 
Exit transverse velocity (Blue), AU/Um 2.21% 
Exit vertical velocity (Green), AV/V,„ 3.11% 

BACK END HALL 

S.S. P.S. 

PLEXIGLASS FRONT END WALL 

Fig. 6 Mean velocity contours for first (upstream) plane at radius = 124 
mm, m = 0.0907 kg/s (view against flow direction) 

£• 38.1 -

BACK END WALL 

blade number 

peripheral distance (nun) 

Fig. 5 Mean velocity survey at downstream (radius = 83 mm) midspan 
for rh = 0.0907 kg/s 

P . S . 30.5 

27.4 

PLEXIGLASS FRONT END WALL 

Fig. 7 Mean velocity contours for fourth plane at radius = 90 mm 
m = 0.0907 kg/s (view against flow direction) 

Fig. 8 Measured static pressure coefficient, cp, contours at the plex
iglass end wall for rh = 0.0907 kg/s 

ured velocity components. A summary of the maximum un
certainties associated with the LDV system are given in Table 
3. 

Results and Discussion 
The experimental measurements were taken at the mass flow 

rates 0.0907 kg/s and 0.1361 kg/s/ At these mass flow rates, 
the Reynolds numbers are 1.14 x10s and 1.91 x 10s, respec
tively, based on the passage averaged exit velocity, chord length 
and the cold air properties at the exit static temperature. The 
corresponding average exit Mach numbers are 0.109 and 0.182 
respectively. The total pressure and temperature are 0.105 X 106 

N/m2 (15.2 psi) and 22°C (71.5°F), respectively, at the inlet 
to the guide vanes for 0.907 kg/s mass flow rate at which most 
of the measurements were obtained. The results of the LDV 
measurements include the mean velocity, flow angles, 13 and 
7, and the turbulence intensities at the measurement stations 
shown in Fig. 3. Referring to Fig. 3, the angle /3 is defined 
with respect to the circumferential direction and is on the plane 
parallel to the end walls. The angle y is the angle between the 
actual flow direction and the blade-to-blade plane parallel to 
the end walls. It is due to the span wise velocity component. 
Some of the results are presented in this paper to describe the 
flow field through the guide vanes. The bulk of the measure
ments were obtained at a mass flow rate of 0.0907 kg/s. The 
mean flow results reported in Figs. 5 through 13 correspond 
to this mass flow rate. 

Mean Velocity. An initial flow survey was carried out at 
midspan, downstream (radius = 83 mm) of the guide vanes 
across the exit of three flow passages to check the flow peri
odicity. The variation of the measured mean velocity with the 
circumferential direction is shown in Fig. 5. Measurements 

could not be obtained close to the sixth vane trailing edge, due 
to the blockage of the laser beams by the blades. The wakes 
of the fifth, sixth, seventh and eighth blades from the inlet 
can clearly be seen in the figure. The small differences in the 
velocities between the wakes and the free streams imply rapid 
mixing, which was also observed by Khalil et al. (1976). Pos
sible reasons for such rapid mixing are the large flow accel
eration, the high level of turbulence, and the predominant 
effect of swirling motion in the vaneless field. A comparison 
of the flow velocity levels in the different passages does not 
reveal exact flow periodicity, and indicates a difference in the 
mass flows through the channels. A two-dimensional com
putation of the flow through a radial inflow turbine scroll-
nozzle assembly also predicted variation in the mass flow 
through the flow passages (Hamed et al., 1978). 

Figures 6, 7, and 9 show the mean velocity contours at the 
first, fourth and fifth measurement stations of Fig. 3. The 
upstream mean velocities are quite uniform (Fig. 6), but not 
symmetrical between the two end walls. They are slightly lower 
near the back end wall due to flow separation after the 90 
degree bend at the scroll exit (radius =137 mm). The flow 
separation was confirmed by a flow visualization using laser 
sheet technique, however, a clear picture could not be taken. 
Figure 7 shows the velocity contours at station 4 slightly up
stream (radius = 90 mm) of the throat. There are two lower 
velocity regions. First one is close to the front end wall near 
the suction surface, and the second one is in the same corner, 
but is a little away from the front end wall towards midspan. 
These lower velocity regions may indicate the existence of 
considerable amount of cross flows carrying the lower energy 
boundary layer fluid to the suction side corner, and further
more towards the midspan location along the suction surface. 
Although, the radial pressure gradient has a force component 
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favoring a cross flow toward pressure side, the opposite pres
sure gradient due to blade geometry seems to be more dominant 
as illustrated in Fig. 8, which shows end wall static pressure 
coefficient, Cp, contours. These two counter affecting pressure 
fields weaken the strength of the secondary flows. The mean 
velocity contours at downstream station (radius = 83 mm) are 
given in Fig. 9. Due to the rapid mixing and very high tur
bulence fluctuations, it is very difficult to distinguish the free 
stream regions from the wakes for the two flow passages. At 
all the stations, the flow velocities are lower near the end walls 
due to the presence of boundary layers. 

Flow Angles. Figures 10 through 12 show the contour plots 
for the flow angle, (3, defined with respect to the circumferential 
direction. The plots are presented for three of the five meas
urement stations shown in Fig. 3. The flow angles, /?, upstream 
of the passage (radius =124 mm) as plotted in Fig. 10 are 
slightly higher towards the back end wall where the velocities 
are slightly lower after the 90 degree bend. The slower moving 
fluid near the back end wall is affected by the radial pressure 
gradient than in the rest of the cross-section and is directed 
closer to the radial direction. Figure 11 shows the flow angle, 
i8, contours at station 4 (radius = 90 mm). There are high angle 
gradients near the suction surface extending from the corner 
of front end wall and the suction surface to the midspan. At 
the locations corresponding to lower velocities of Fig. 7, the.-e 
is flow overturning. The flow overturning is because of the 
passage pressure gradient which is dominated by the pressure 
gradient from pressure to suction side due to blade shape. The 
contour plot of Fig. 12 gives the flow angle, /3, distribution at 
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Fig. 14 Mean velocity contours for upstream plane at radius = 124 mm, 
rh = 0.1361 kg/s (view against flow direction) 

the downstream station (radius = 83 mm). In general, the flow 
angles are smaller than the blade angle (11 degrees) which is 
defined as the trailing edge bisector angle measured from the 
circumferential direction at the center of the trailing edge circle. 
This overturning is mostly due to the passage cross flows from 
pressure to suction side occupying large flow areas because of 
the very low aspect ratio. Generally, the flow has a smaller 
angle in the regions affected by the wakes. This is probably 
due to the blockage caused by the vane thicknesses at the exit 
as explained by Risika (1964). Higher angles are observed near 
the end walls. The angle distributions between the two flow 
passages are not symmetric due to the differences of the flow 
through each blade channel as a result of the circumferential 
variation of the scroll cross-section which is described in the 
section "Test Rig." 

Figure 13 shows the contour plots for the flow angle, y, on 
the upstream station where the radius is 124 mm. A positive 
7 value shows a flow direction toward the plexiglass front wall. 
It is towards the front end wall almost everywhere at this station 
due to the 90 degree bend of the back wall at the inlet to the 
vaneless nozzle region. Its maximum value reaches to 7 degrees. 

Effect of Mass Flow Rate. The measurements upstream 
and downstream of the passage were repeated for the mass 
flow of 0.1361 kg/s. Figures 14 through 17 illustrate the results 
of these higher mass flow rate measurements. Figure 14 shows 
the mean velocity contours at the upstream station (ra
dius = 124 mm). Similar to the contour plot of Fig. 6, the 
velocities are quite uniform for 0.1361 kg/s, but the level of 
velocity is higher in accordance with the higher mass flow. The 
extent of the lower velocity regions close to the end walls seems 
to be more for the higher mass flow rate. The downstream 
station (83 mm radius) contour plot of Fig. 15 covers the full 
channel between the blades 7 and 8, but the passage between 
the blades 6 and 7 is only partially covered downstream. The 
wake behind the blade 7 of Fig. 15 at 0.1361 kg/s seems to be 
affecting a larger area suggesting that the fluctuations and the 
resulting mixing increased. 
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Figure 16 for the flow angle, /3, contours at a flow rate of 
0.1361 kg/s and radius 124 mm (station 1) is very similar to 
Fig. 10. The angles, 0, downstream of the passage (radius = 83 
mm) are generally lower for the high mass flow rate (Fig. 17) 
as compared with those for the lower mass flow rate (Fig. 12). 
There are higher angle gradients and it is very difficult to 
separate the free stream from the wake. 

Turbulence Intensities. Figures 18 and 19 show the tur
bulence intensity contours normalized with respect to passage 
average exit velocity on the blade-to-blade plane at 6.5 mm 
(midspan), and 1 mm, respectively, from the plexiglass front 
end wall. In both figures, a higher turbulence region appears 
near the pressure side after the leading edge, and the turbulence 
intensities increase in the downstream flow direction. These 
figures also depict the effect of end wall cross flow transporting 
higher turbulence fluid because of the passage pressure gra
dient. A comparison of Figs. 18 and 19 reveal that turbulence 
intensities are higher in Fig. 19 due to end wall proximity. 
Table 4 lists the passage averaged turbulence intensities at each 
measurement station for 0.0907 kg/s and 0.1361 kg/s mass 
flow rates. The average turbulence intensities increases with 
decreasing radius in the downstream flow direction. It increases 
with an increase in the mass flow rate at all stations. This 
decrease is from 23.81 percent to 17.23 percent at the down
stream station (fifth) for the mass flow rate change from 0.0907 
kg/s to 0.1361 kg/s. 

Numerical Results. One of the primary goals of the ex
perimental study was to provide a data base for the devel
opment, improvement and verification of turbomachinery 
computer programs. The flow field on the blade-to-blade mid-
span surface through the guide vanes of the radial turbine was 
computed using a "panel method". The results of these com
putations are presented in this section and compared with the 
experimental results. 

Fig. 18 Turbulence intensity, k, on blade-to-blade, midspan plane at 
rh = 0.0907 kg/s 

Fig. 19 Turbulence intensity, k, on blade-to-blade plane, 1 mm from the 
front end wall at rh = 0.0907 kg/s 

Table 4 Passage averaged turbulence intensities 
Radius 124 HO 102 90 83 
Turbulence intensity 
at rh = 0.0907 kg/s 9.04 10.11 11.03 21.0 21.81 
Turbulence intensity 
at rh = 0.1361 kg/s 8.08 — — — 17.23 

The panel code was developed by McFarland (1982, 1984) 
to solve the inviscid, irrotational, compressible, blade-to-blade 
flow equations on a surface of revolution of variable stream 
sheet thickness. The compressibility effects are linearized in 
the governing equations and the solution is obtained using 
integral "panel method." The panel method used advanced 
surface singularity formulations adapted from those found in 
external flow analysis. The program is intended primarily for 
use in preliminary design studies, and it combines the advan
tages of rapid solution capability, robustness and versatility. 
Since a direct linear equation solver is used, a solution is always 
obtained even for extreme flow conditions, however, the ac
curacy decreases when the flow becomes transonic. The pro
gram primarily computes the flow on the blade surface, but 
can also be used to calculate the flow field inside the passage, 
though not as efficiently as on the blade surface. Further details 
of the solution method used in the "panel" code can be found 
in references by McFarland (1982, 1984). 

The equations governing the flow through the guide vanes 
of the experimental turbine are simpler than the more general 
equations of McFarland (1984), because of the incompressible 
flow field and the constant flow channel height. These equa
tions led to an exact solution of the flow field. The numerical 
solution was obtained at a velocity of 16.8 m/s and a flow 
angle, 0, of 37.5° measured from circumferential at the inlet 
to the passage. These conditions match the passage averaged 
flow velocity and angle obtained by LDV measurements at the 
inlet for m = 0.0907 kg/s. The computed blade loading in terms 
of pressure coefficients, Cp, is shown in Fig. 20. The pressure 
gradient is from suction to pressure side near the leading edge 
due to the negative incidence. After the pressure coefficient 
curves cross each other at approximately 1/4 chord length 
downstream of the leading edge, the pressure gradient changes 
direction and acts from pressure to suction side. These results 
are consistent with the measured static pressure coefficient 
contours of Fig. 8. These opposite pressure gradient directions 
at upstream and downstream regions influence the end wall 
cross flow considerably. The computed velocity contours at 
midspan location through the guide vanes are plotted in Fig. 
21. The flow acceleration around the pressure side of leading 
edge and flow deceleration further downstream are very clear. 
The figure also shows the stagnation region at the suction side 
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influenced by the scroll geometry for the present experimental 
turbine test rig. The deviations from periodicity between flow 
channels and assymmetry with respect to the two end walls 
were attributed to this upstream influence. Significant end wall 
cross flows were observed inside the blade passages close to 
the trailing edge. Rapid mixing of the flow affected by the 
wakes and the free stream turbulence occurred downstream of 
the trailing edge. Average flow angle on downstream measuring 
plane was found-to be lower than the exit blade angle. The 
flow turbulence increased in the downstream direction and this 
was considered to be one of the causes of rapid mixing at the 
exit from the blade passages. Mass flow rate increase did not 
change the inlet flow angle as expected, but it decreased the 
passage averaged exit flow angle. The normalized passage av
eraged turbulence intensity was reduced with the mass flow 
rate increase at both the inlet and exit measurement stations. 

Results of an inviscid, panel method flow solution on the 
blade-to-blade surface through the nozzle blades agreed well 
with the experimental results. A few discrepancies were at
tributed to the viscous effects which were not taken into ac
count in the numerical solution. 

m—meridional distance (mm) 

Fig. 20 Calculated blade surface pressure coefficient distribution for 
V, = 16.8 m/s, B, = 37.5deg 

PANEL METHOD 

Fig. 21 Calculated velocity contours on blade-to-blade, midspan plane 
at Vi = 16.8 m/s, /}, = 37.5 deg 

19.2 19.2 

Fig. 22 LDV measured mean velocity contours on blade-to-blade, mid-
span plane at rh = 0.0907 kg/s 

of theleading edge. This plot is in satisfactory agreement with 
the experimental results of Fig. 22 which were obtained by 
interpolating the mean velocity values at midspan location of 
the five measurement stations. The differences can be attrib
uted to viscous and three dimensional effects. 

Conclusion 
The flow field through the blade passage was found to be 
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Flow Measurements in a Model 
Burner—Part 1 
Laser-Doppler measurements of mean and turbulent velocity characteristics are 
reported in the developing region of the isothermal flow of a model of an industrial 
oxy-fuel burner. The burner consists of a central axisymmetric jet surrounded by 
sixteen circular jets, simulating the injection of oxygen in pratical burners. Errors 
incurred in the laser-Doppler measurements are estimated and bias effects due to 
unequal number density of seed particles in the various jet flows are investigated. 
The experiments have been carried out to investigate the mixing efficiency of the 
burner assembly without swirl motion and to assess the accuracy of calculation 
procedures in industrial burners. The results show that the present flow develops 
faster than related coaxial free jets with the same velocity ratio between central and 
peripheral air streams due to the comparatively high mixing rate peculiar to the 
present configuration. The existence of zones characterized by large turbulence 
anisotropy indicates the need to take account of the normal stresses in any proposed 
mathematical model to simulate the present flow field. 

1 Introduction 
Industrial burners operating with oxy-fuel conditions are 

commonly used in melting furnaces where both a high flame 
temperature and heat transfer rate are required to melt the 
charge, e.g., Booker (1982), Gibbs and Williams (1983), Schatz 
and Hueber (1984) and Bansal and McCombs (1986). However, 
their use in industrial furnaces is only economic if the benefits 
in fuel savings and productivity offset the cost of oxygen and 
this implies the use of optimized burner geometries. Never
theless, the design of burners has relied almost exclusively on 
empirical methods, e.g., Gibbs and Williams (1983), and in
creased knowledge of the fluid flow in the vicinity of the 
burners is essential to further modifications in their geometry 
and to allow to predict their effects. This is the main objective 
of the work reported in this paper. 

Safety requirements in oxy-fuel burner installations neces
sitate mixing of the fuel at, or just downstream of the burner 
face and, therefore, combustion efficiency is limited by the 
rates of mixing that can be achieved. In practice, multi-jet 
burner head configuration systems have been preferred to sin
gle and coaxial jets, since they improve the mixing efficiency 
considerably and produce lower sound pressure levels, al
though they increase the complexity of the burner. In addition, 
some designs of oxy-fuel burners incorporate means of hot gas 
recirculation, usually by swirl motion, to ensure flame stabi
lization. Measurements of mean and turbulent velocity char
acteristics in model burners are then required to evaluate 
particular geometrical configurations. 

The present study reports laser-Doppler measurements of 
the isothermal flow in a model of an oxy-fuel burner in current 
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development and use in industrial glass furnaces. This work 
follows those of Durao et al. (1987) and Carvalho et al. (1987) 
which present measurements and predictions of the flow and 
heat transfer characteristics of an oxy-fuel processing glass 
furnace. The burner consists of a central axisymmetric jet 
surrounded by sixteen circular jets inclined toward the cen
ter line, simulating the oxygen jets used in practical burners. 

Experiments in multi-jet configurations have not been re
ported in the literature, but related simplified flow geometries 
consisting of coaxial free jets have been studied by Champagne 
and Wygnanski (1971), Pratte and Keffer (1972), Durao and 
Whitelaw (1973) and Ribeiro and Whitelaw (1976-1980) with 
hot wire anemometry. Multi-jet flow configurations include 
additional complexities, such as comparatively high turbulence 
levels and recirculation zones, and their study is limited to the 
use of non-intrusive laser-Doppler velocimetry. However, ac
curate LDV-based measurements in turbulent multi-stream 
mixing flows require equal densities of seed particles in the 
various streams, as shown by Dibble et al. (1987). 

The results presented in this paper include mean and tur
bulent velocity characteristics in the three spatial directions for 
a range of operating conditions of nonswirling flows. The 
effect of swirl on the flow field will be reported in Part 2 of 
this paper. The experiments are concerned with the developing 
region of the flow and provide a basis to improve our under
standing of relevant transport processes in industrial burners, 
guide burner design and to assess the accuracy of calculation 
procedures in burners of practical interest. The main sources 
of imprecisions of the laser-Doppler measurements are iden
tified and the related errors are estimated. 

Section 2 describes the experimental method, gives details 
of the flow configuration, of the laser-Doppler velocimeter 
and of the errors incurred in the measurements. Section 3 
presents and discusses the profiles of the mean and fluctuating 
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Table 1 Flow conditions 

Run 
Central jet 

Peripheral 
jets 

Axial 
air 

(1/s) 

Tangential 
air 

(1/s) 

Fuel-line 
(air) 
(1/s) 

(m/s) 
Re 

(X lO 3 ) 
Flow 
rate 
(1/s) 

U„ 
(m/s) 

Re 
(xlO3) 

u,/ua 

Al 

A2 

A3 

4.0 — 

4.0 — 

3.3 — 

— 
— 
0.7 

20 

20 

20 

17.6 

17.6 

17.6 

9.0 

18.0 

9.0 • 

20 

40 

20 

6.0 

12.0 

6.0 

1.0 

0.5 

1.0 

velocity characteristics and the last section summarizes the 
main findings and conclusions. 

2 Experimental 

2.1 Flow Configuration and Flow Conditions. The burner 
arrangement consists of a central axisymmetric jet of 17mm 
diameter, Dit surrounded by sixteen 6mm circular jets inclined 
at 4 deg towards the burner axis. The central jet includes the 
air flow to simulate the fuel-line and the atomization air. This 
can be fed separately through an axial entry to provide a non-
swirling jet or through a swirl chamber which generates a 
tangential velocity by the injection of air through tangential 
slots. The fuel atomizer has the shape of a 30 deg truncated 
cone with four 1.5mm diameter holes disposed symmetrically 
along the inclined wall and one 2mm diameter hole at the 
center of the plane wall, aligned with the burner axis. The 
sixteen peripheral air jets simulate the injection of oxygen in 
practical burners and are located along a circle with 4mm in 
diameter, DQ. 

The air flow rate is measured by three calibrated standard 
orifice meters for the central and the peripheral jets. The air 
flow rate to simulate the fuel is measured by a calibrated 
rotameter. 

Table 1 summarizes the flow conditions analyzed in this 
paper. Each run is characterized by the ratio between the mean 
velocities in the central jet, £/,-, and in the peripheral jets, U0. 
The injection of fuel is studied in run A3, which is characterized 
by a centerline axial velocity at the exit of the burner, Um, 
larger than {/,-. 

The origin of the axial axis, x, is taken at the exit plane of 
the jets and the tangential velocity is taken positive in the 
anticlockwise direction. The symmetry of the flow was verified 
in the vertical and in the horizontal plane, as discussed below. 

2.2 Measurement Technique. Velocities were measured by 
a laser-Doppler velocimeter operated in the dual-beam, for
ward-scatter mode with sensitivity to the flow direction pro
vided by light-frequency shifting from acousto-optic 
modulation (double Bragg cells). The resulting frequency shift 
varied between 0 and 10 MHz. The principal characteristics 
of the laser-Doppler velocimeter, and in particular those of 
the transmitting optics, are summarized in Table 2. 

Table 2 
cimeter 

Principal characteristics of the laser-doppler velo-

- 5W (nominal) Argon-Ion Laser: wavelength 
- focal length of focusing lens 
- beam diameter, at e"2 intensity 
• measured half-angle of beam intersection 
• fringe separation (line pair spacing) 
• calculated dimensions of measuring volume, 
at e~2 intensity 
(major and minor axis of the ellipsoid) 
velocimeter transfer constant 

514,5 nm 
300 mm 
1,5 mm 

4,92° 
3,00 /an 

1.528; 0.132 mm 
0.33 MHz/ms"1 

The central and the peripheral air jets were seeded with 
atomized silicone oil. The particles were supplied by several 
atomizers and injected in all the air ducts separately. The light 
scattered by the particles was collected by a lens (focal length 
of 200 mm) and focused into the pinhole aperture (0.300 mm) 
of a photomultiplier with a magnification of 0.74. The output 
of the photomultiplier was band-pass filtered and the resulting 
signal processed by the laboratory-built frequency counter de
scribed by Heitor et al. (1984). 

The complete LDV system and the burner were mounted on 
two separate two-dimensional manual traversing units, allow
ing the positioning of the laser-velocimeter control volume 
within ±0.5 mm. 

The radial, V, and the tangential, W, velocity components 
were measured by traversing the control volume along the 
vertical and horizontal planes of symmetry, respectively. The 
axial velocity component, U, was measured along the two 
planes of symmetry and the discrepancies were found to be 
within the measuring accuracy. The distributions of Reynolds 
shear stresses, u' v' and u' w', were obtained respectively along 
the vertical and horizontal planes of symmetry, with the laser 
beams in the horizontal and vertical planes and at ±45 deg, 
e.g., Durst et al. (1981) and Adrian (1983). 

2.3 Accuracy of the Measurements. The tolerance on the 
output of the counter derives from the error in the clock count 
and from the resolution of the floating point data format and 
the maximum error is always less than 1 percent. Larger errors 
may, however, arise due to other sources and are discussed in 
the following paragraphs. 

Nonturbulent Doppler broadening (systematic) errors due 
to gradients of mean velocity across the measuring volume, 
e.g., Kreid (1974), may affect the variance of the velocity 
fluctuations, but for the present experimental conditions are 

N o m e n c l a t u r e 

D 
k 

Rm, — 

U 
V 

diameter 
turbulent kinetic energy, 
k=(u'2 + v'2+w'2)/2 
radial coordinate 
shear stress correlation coeffi
cient, Ruv = u'v'/(u^2 + v'2) 
axial velocity, U= U+u' 
radial velocity, V=V+v' 

x = axial coordinate taken from 
the burner face 

W = tangential velocity, 
W=W+w' 

vT = turbulent viscosity 

Subscripts 
CL = center line 

CTR = seeding only the central jet 
/ = inner or central jet 

m = maximum (at the exit of cen
tral jet) 

0 = outer or peripheral jets 
PER = seeding only the peripheral 

jets 
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sufficiently small for their effect to be neglected: the maximum 
error is of the order of 7 x lO"4!//2 and occurs at the edge of 
the peripheral jets close to the burner face. Transit time broad
ening has been shown by Zang and Wu (1987) to be larger 
than shot noise, e.g., Adrain (1978), and to be the principal 
source of noise in laser-Doppler anemometry: for the present 
optical configuration the related signal-to-noise ratio is about 
69 and the maximum error in the variance of the velocity 
fluctuations is of the order of 2x 10~3C/,2. 

In the experiments, the number of individual velocity values 
used to form the averages was always above 10,000. As a result, 
the largest statistical (random) errors were 1 percent and 4 
percent, respectively for the mean and variance values, ac
cording to the analysis referred by Yanta and Smith (1978) for 
a 95 percent confidence interval. 

No corrections were made for sampling bias, and the sys
tematic errors that could have arisen were minimized by using 
high data rates in relation to the fundamental velocity fluc
tuation rate as suggested, for example, by Dimotakis (1978), 
Erdmann and Tropea (1981) and Edwards (1978): the data 
acquisition rate varied between 5 and 10 kHz, with the lower 
values at the edge of the jets. In addition, no correlations were 
found between Doppler frequencies and time interval between 
consecutive bursts, suggesting that bias effects are unimportant 
for the present flow conditions, e.g., Durao et al. (1985). 
Following the analysis of Glass and Bilger (1978) for coflowing 
streams, these errors are less than +9 and -10 percent for 
the mean and variance values, respectively. 

"Fringe (angle)" bias is minimized by using large values of 
frequency shifting, e.g., Durst and Zare (1974). For the present 
case, following the analysis of Whiffen (1975) and Lau et al. 
(1981), the acceptance angle was 360 deg for a fringe to particle 
velocity ratio larger than 1, which could be achieved with 
frequency shifting up to 10 MHz, even in the highly turbulent 
mixing region immediately downstream of the burner exit. 

In order to minimize bias errors due to unequal particle 
densities in the central and peripheral jets, e.g., Dibble et al. 
(1987) and Birch and Dodson (1980), the two streams were 
seeded separately with rates of particles in proportion to the 
air flow rate in each one. In this way it is possible to obtain 
similar particle concentrations in all the jet flows, as discussed 
by Dibble et al. (1987). An overestimation of these bias effects 
have been quantified from measurements obtained by seeding 
only one of the air streams and found to be smaller than 0.2(7, 
and 4x 10~3U2, respectively, for the mean and the variance 
values. These measurements will be presented and discussed 
in the next section. 

Fig. 1 Schematic diagram of burner assembly (model of an industrial 
oxy-fuel burner) 
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3 Results and Discussion 
The results are presented and discussed under two headings. 

The first considers the mean and turbulent velocity charac
teristics of the flow for two velocity ratios U,/Ua, and includes 
the influence of the injection of fuel on the flow field; the 
second discusses conditional measurements of mean and tur
bulent velocity characteristics by seeding only the central jet 
or the peripheral jets. 

3.1 Mean and Turbulent Velocity Fields. Figure 2 presents 
the developing centerline distributions of the mean axial ve
locity and of the Reynolds normal stresses for runs Al, A2, 
and A3. The distributions of the mean axial velocity are plotted 
together with those obtained by Ribeiro and Whitelaw (1980) 
for coaxial air streams and include the regime of self-preser
vation. The results show that the decay of the centerline velocity 
is larger than that of free coaxial jets with similar velocity 
ratios between central and peripheral air streams. This is a 
consequence of the comparatively high mixing rates peculiar 
to the present multi-jet flow configuration, which is essential 
to improve the performance of oxy-fuel burners. The results 

Fig. 2 Velocity distributions along the centerline; o-Run A1; A Run 
A2; D-Run A3; Ribeiro and Whitelaw (1980) U,/l/0 = 1.0; Ribeiro 
andWhitelaw (1980) l/,/l/0 = 0.65. (a) Inverse of the mean axial velocity, 
UJUcc, (b) variance of axial velocity fluctuations. tP/UmX 102; (c) vari
ance of radial velocity fluctuations, v'2IUl,x 102. 

also show that decreasing the value of £/,/t/0, by increasing 
the velocity of the peripheral jets, attenuates considerably the 
decay of the centerline velocity, giving rise to larger flames in 
practical burners. For a velocity ratio U,/U0 of unity the pe
ripheral jets do not influence the mean velocity at the centerline 
up to x/Di = 4, but they do, however, affect the Reynolds 
stresses, particularly u72, which presents a local maximum at 
x/Dj = 4 associated with the region where the mixing between 
the central and the peripheral jets has reached the centerline. 
The subsequent shape of the centerline distribution of u71 

corresponds to the existence of a plateau in the mean velocity 
followed by its decay with tendency towards the self-preser-
vation region. The values of i772" are larger than those of v'2 

due to the high production of u'2 associated with the larger 
radial gradient (off center line) of the mean axial velocity, 
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Fig. 3 Radial profiles of mean and turbulent velocity characteristics 
for run A1; A-x/D, = 0.26; H-X/D, = 1.0; O-X/D, = 2.0; ± -X /D , = 4 .0; a-xl 
D, = 6.00; _v-x/D,= 10.00. (a) Mean axial velocity, UlUCi, (b) mean radial 
velocity, VIUC£ (c) variance of axial velocity fluctuations, U'2IUCL X 102; 
(d) variance of radial velocity fluctuations, V2iUlL x 102; (e) variance of 
tangential velocity fluctuations, MP/UCL X 102;( / ) Reynolds shear stress, 
U 'V7UCLX10 2 ; (g) Reynolds shear stress u'w'lVciX 102; (h) correlation 
coefficient for Reynolds shear stress, R„„; (;') ratio between shear stress 
and turbulent kinetic energy, u'v'Ik. 

which stems from the dominance of the central jet for all the 
cases studied, as discussed below. The center line distribution 
of v'2 indicate values independent of the velocity ratio t/,/f/0 
up to x/Dj= 8 and decreasing with this ratio far downstream. 
Since the production of v'2 is negligible for the two velocity 
ratios studied (see below), it appears that the values of v^ are 
due mainly to redistributive effects and to turbulent diffusion 
as also discussed by Ribeiro and Whitelaw (1980). 

The inclusion of air through the fuel injector (run A3) is 
shown to affect the distribution of Reynolds stresses up to x/ 
Di = 6 (note the value of the normalization velocity, Um). Peak 
values of H71 are still higher than those of v^ due to the large 
production of u '2 as a consequence of the large radial gradient 
of mean axial velocity in the central region imposed by the 
boundary conditions of this run. 

Figure 3 shows the radial distributions of the mean velocity 
and Reynolds stresses for six consecutive axial stations between 
x/Dj = 0.26 and 10.0 and confirms the symmetry of the mean 
and turbulent flows at x/D, = 2 and 10.0. The initial profiles 
of the mean velocity allow to identify a recirculation zone 
between the central and the peripheral jets extending up to x/ 
Di =1.0 and show that the decrease of the central core is slower 
than the outer peripheral cores. The outer velocity peaks move 
towards the central part of the flow, which is associated with 
the maximum negative radial velocity of -0.26U, at one di
ameter downstream from the burner exit and away of the 
centerline. 

The distribution of normal stresses exhibit three peaks in 
the.near-burner region with u^ always higher than v'2 and 
w'2. This stems from the large production of u' associated 
with the radial gradients of axial mean velocity, which are at 

IS ° 

Fig. 3 (cont.) 

least one order of magnitude larger than the gradients of radial 
and tangential velocities. The behaviour is consistent with the 
increase in the magnitude of the Reynolds shear stress, u'v', 
from x/D,•= 0.26 to x/Dt = 1.0, which shows a linear and sym-
metrical distribution at x/Dj= 1.0 with peak values of u'v'/ 
UCL

2 = 0.020 and, therefore, considerably larger than those 
found in coaxial jets. The sign of the shear stress u'v' is 
consistent with the direction of the mean flow, with near-zero 
values coincident with the peak values of the mean axial ve
locity. The shear stress u'v' is positive along the edge of the 
central jet, suggesting that faster moving elements of central-
jet fluid («' > 0) tend to move outwards into the low-pressure 
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region between jets (i.e., v' >0 and u'v'>Q). Similarly, the 
shear stress is negative along the inner edge of the peripheral 
jets, because the movement of jet-fluid particles towards the 
centerline (y'<0) are associated with positive axial velocity 
fluctuations (i.e. u' >0 and u'v' <0) and is positive along the 
outer edge of the jets because the entrainment of external air 
(v' < 0) results in negative axial velocity fluctuations (i.e.,a'< 0 
and u'v' >0). The results also show_that the sign of u'v' is 
related to the sign of the shear strain d U/dr in accordance with 
a turbulent viscosity hypothesis (u'v' = -vTdU/dr where vT 
is a turbulent viscosity). 

The radial distribution of the shear stress u'w' shows zero 
values along the central jet and at the centre of the peripheral 
jets and exhibits two peaks within a region one diameter down
stream of the exit plane in the zone between the central and 
the peripheral jets. This is coincident with the inter-jets recir
culation zone which terminates just downstream of x/Dj = 1. 

At two diameters downstream, the distribution of the mean 
axial velocity still exhibits a region of positive gradient located 
between two regions of opposite gradient and the Reynolds 
shear stresses u'v' still displays two changes in sign, but the 
magnitude of the normal stresses is comparatively low. The 
decrease in the negative peak of u' v' in the inner shear layer 
of the peripheral jets (0.5<r/£)/<1.0) is associated with the 
decrease in u^, which become smaller than v'2 and w'2. In 
addition, this anisotropic relation results from the interaction 
between normal stresses and normal strains, since dU/dx is 
positive and large and contributes as a sink of up' and d V/dr, 
although comparatively small, is negative and contributes as 
a source of v^. It must be noted that this behavior is not 
surprising because it occurs downstream the recirculation zone 
identified between the central and the peripheral jets and is 
similar to the turbulent structure near stagnation points in the 
wake of bluff bodies shown by Taylor and Whitelaw (1984) 
and Heitor et al. (1987). 

The shear stress u'w' becomes negligibly small at x/Di = 2.0 
and the normal stress w'2 becomes of the order of v'2. 

The previous paragraphs indicate that the turbulent structure 
of the near-burner region is different from that reported by 
Durao and Whitelaw (1973) and Ribeiro and Whitelaw (1976, 
1980) for coaxial jets with similar velocity ratios. The com
paratively large wake between the jets in the present flow results 
in an unbalance between production and dissipation of tur
bulent kinetic energy, which increases turbulent diffusion and 
the rate of mixing between jets. 

At four diameters downstream, the radial gradient of the 
mean axial velocity and the shear stress u'v' show near-zero 
values at r/i3, = 0.75 and, in agreement with the centerline 
distributions of Fig. 2, suggest that the mixing between the 
central and the peripheral jets has reached the centerline. 

Far downstream, the profiles of mean velocity of Fig. 3 
display a monotonic behavior and the normal and shear stresses 
exhibit a trend similar to that of a fully-developed jet. The 
peaks for each normal stress distribution appear in the zone 
of maximum production of turbulent kinetic energy and, sim
ilarly to the results of Ribeiro and Whitelaw (1976_and 1980). 
still reveal strong anisotropy with ~u71 larger than v'2 and w'2. 
However, the shear stress normalized by the maximum velocity 
in each profile, u'v'/UCL

2, show maximum values around 
0.008, which are still lower than the values given by Wygnanski 
and Fielder (1969) and Townsend (1976) for self-preserving 
jets (i.e. 0.020). This agrees with the centerline distributions 
of Fig. 2 and confirms the developing nature of the flow-region 
investigated. 

Structure parameters, such as Ruv and u'v'/k, have been 
calculated from the results and are plotted in Figs. 3 (ft) and 
3(/). Their radial profiles show trends similar to those of u'v' 
shown in Fig. 3(/) and indicate two main types of behavior. 
Upstream of x/Dt = 4, high and low values coexist with sharp 
gradients between them, indicating zones of eddy motion with 

r/Di ' r/Di 

Fig. 4 Radial profiles of axial, radial and tangential normal stresses af: 
(a) xlDi= 1.00; (b)x/D, = 10.00; t>-v'2IU?\ n-^/W,2 ; o-u^/U,2; (2k/3) 

strong directional preference e.g., Ribeiro and Whitelaw (1980). 
The correlation coefficient for shear stress, u'v'/k reaches 
values up to 0.50, which is significantly higher than the value 
of 0.30 reported by Bradshaw et al. (1967) and Harsha and 
Lee (1970) for turbulent shear flows. On the other hand, down
stream x/Dj = 4.0 the distributions of the structure parameters 
suggest that the zones of directional preference disappear as 
x increases and that the influence of extra source terms in the 
conservation equations for Reynolds stresses is minor: the val
ues of Ruv and u'v'/k tend to 0.50 and 0.30, respectively. 

The existence of zones characterized by large turbulence 
anisotropy in the present flow has important implications, 
because calculation methods based on scalar effective viscos
ities do not adequately represent the behavior of the normal 
stresses. Figure 4 complements the previous one and shows the 
radial distribution of 2/3 k at two axial locations, respectively 
x/Dj= 1.0 and 10.0. The deviation from isotropy beyond the 
central zone is very clear, even at x/D(= 10 and, following the 
analysis of Ribeiro and Whitelaw (1980), suggests that tur
bulence is mainly transported in the axial direction through 
large scale eddies. On the other hand, the comparatively low 
magnitude of the normal stresses and their relative isotropy 
near the centerline suggest that the flow is dominated by dis
sipating small-scale eddies. Therefore, the present results imply 
that the calculation of the flow in industrial multi-jet burners 
should involve a turbulence model at the level of transport 
equations for the Reynolds stresses, rather than at the level of 
a turbulent viscosity closure. 

3.2 Conditional Velocities on Central and Peripheral Jets 
Seed. In turbulent mixing flows, bias effects in LDV-based 
velocity measurements exist due to unequal seed density in the 
mixing streams, e.g., Birch and Dodson (1980), and in this 
subsection the limits of these bias are quantified by seeding 
only the central jet or the peripheral jets. The results are also 
used to analyse the mixing characteristics of the flow and to 
discuss the performance of the present burner geometry. 

Figures 5 and 6 show, respectively, the centerline and radial 
distributions obtained at x/D = 4.Q and 13.0, together with 
those obtained by seeding both streams. 

The centerline distribution of the mean axial velocity con
ditioned on the central jet seed, £/CTR> is, as expected, larger 
than that conditioned on the peripheral jets seed, C/PER> with 
differences decreasing far downstream and outwards. On av
erage, fluid originating from the peripheral jets has a smaller 
centerline velocity than fluid originating from the central jet. 
In addition, the radial profiles of the mean radial velocity show 
that the peripheral jets fluid are preferentially deflected to
wards the centerline (K P E R<0) , while central jet fluid is, on 
average, deflected outwards, away from the centerline 
(KCTR>0). 

The differences between the conditioned turbulent velocities, 
with the exception of particular points in the profiles of u' , 
are small and within the errors incurred in the measurements 
and estimated in 2.3. Near the centerline at x/D = 4, the axial 
variances of the conditioned velocity on the peripheral jets, 
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Fig. 5 Centerline distributions of conditional velocities on central and 
peripheral jets seed; A-seeding in the central jet; o-seeding in the pe
ripheral jets; a -seeding in both streams, (a) Mean axial velocity, UIU,; 
(b) variance of axial velocity fluctuations, IF^/l/fx 102; (c) variance of 
radial velocity fluctuations, v'^IUfx 102. 

w PFR, tend to those of annular jets and, therefore, are higher 
than w'2CTR, which are similar to the unconditioned values. 
Far downstream, at x/D= 13, the differences observed in the 
profiles of the conditioned axial variances are similar to those 
observed by Ribeiro and Whitelaw (1980) for different velocity 
ratios between central and peripheral coaxial air streams. Re
gardless of the physical interpretation, the conditioned results 
presented in Figs. 5 and 6 represent the limits of bias of velocity 
distributions due to unequal seeding in turbulent coaxial multi-
jet flows. 

4 Conclusions 
Laser-Doppler measurements of the mean and turbulent ve

locity characteristics are reported in the developing region of 
the isothermal flow in the vicinity of an oxy-fuel model burner. 
The geometrical configuration is similar to that of coaxial jets 
where the annulus has been replaced by sixteen peripheral jets. 
The main sources of imprecision of the LDV measurements 
are identified and the related errors are estimated. The fol
lowing is a summary of the more important findings and con
clusions of this work. 

9 The principal source of imprecision of the LDV meas
urements results from bias effects due to unequal seed 
density in the central and peripheral jets. The limits of 
these bias are established by seeding only the peripheral 
jets. 

« The present multi-jet assembly develops faster than related 
coaxial jets with similar velocity ratios between the central 
and the peripheral air streams, U/U0, due to compara
tively high mixing rates, which improve the performance 
of industrial burners. The decay of the centerline velocity 
is attenuated by decreasing the value of U,/Ua and may 
give rise to longer flames in practical burners. 

• For Uj/U0=l the flow is characterized by considerably 
large values of the Reynolds shear stress and by zones of 

r= i 

r/Di 

x/Dj.13.00 

Fig. 6 Radial profiles of conditioned velocities on central and periph
eral jets seed at xlD, = 4.00 and xlD, = 13.00; A -seeding in the central jet; 
o -seeding in the peripheral jets; u -seeding in both streams, (a) Mean 
axial velocity, DID,; (b) mean radial velocity, VIU,; (c) variance of axial 
velocity fluctuations, U^IUfx 102; (d) variance of radial velocity fluctua
tions, V*IU?x 102; (e) Reynolds shear stress, u'v'lUfx 102. 
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Fig. 6 (cont.) 
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large turbulence anisotropy, which extend over all the 
length of the measurements. The normal stress in the axial 
direction is larger than those in the radial and tangential 
directions with the exception of a small region downstream 
the recirculating inter-jet zone. The turbulent structure is, 
therefore, different from that in related coaxial jets due 
to the comparatively large dominance of the central jet. 
In general, the experiments reported here provide evidence 
that the calculation of the aerodynamic field in multi-jet 
burner assemblies requires consideration of the individual 
stresses. 
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On the Mach Number Variation in 
Steady Flows of Dense 
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University, \ye consider the steady flow of five commonly encountered hydrocarbons in their 
Blacksburg, VA 24061-0219 dense gas regime. Isentropic flows are first examined and it is shown that dense gas 

effects lead to a non-monotone variation of the Mach number with density. It is 
also demonstrated that these effects may give rise to an increase, rather than the 
classical decrease, in the Mach number across oblique compression shocks. Signif
icant increases in the shock detachment angle are also reported. 

1 Introduction 
The theory of perfect gases forms the basis for most of our 

intuition concerning the behavior of compressible fluids. How
ever, dense gas effects may play a critical role in many appli
cations. Examples include chemical transport and processing, 
two-phase flows, and Rankine power cycles. A new feature 
which arises for many fluids is an increase in the sound speed 
during isentropic expansion. This contrasts sharply with the 
perfect gas theory where the sound speed varies as 

7-1 7 - ' 

p 2 or p 2y , 
where p, p, and y > 1 are the fluid density, fluid pressure, 
and the ratio of specific heats. As a result, the isentropic 
expansion of a perfect gas always results in a decrease in the 
sound speed. 

This nonclassical variation in the sound speed can lead to 
qualitative, in addition to quantitative, differences in the gas-
dynamic response. Recent surveys of these differences have 
been provided by Thompson (1971), Menikoff and Plohr 
(1989), Leidner (1990), and Cramer (1991). Of particular in
terest here is the fact that the decrease in the sound speed with 
increasing density may lead to a decrease in the Mach number 
during an isentropic expansion. A detailed description of this 
phenomenon can be found in the work of Leidner (1990), 
Cramer (1991), and Cramer and Best (1991). This nonclassical 
behavior is also implicit in Thompson's (1971) study as well 
as the more recent work on transonic nozzle flows by Warner 
(1990) and Chandrasekar and Prasad (1991), and Cramer and 
Crickenberger's (1992) analysis of the Prandtl-Meyer function. 

Because the basic physics have already been described ex
tensively in the previous investigations, here we simply note 
that the differential form of the Bernoulli equation for steady, 
isentropic flows of arbitrary single-phase gases can be written 
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where M is the local Mach number and 

, . pr i 
Jml-T-J?- (L2) 

Here the thermodynamic parameter 

„ a da 
r ^ - + F (1.3) 

P dp s 

is frequently referred to as the fundamental derivative of gas-
dynamics. The quantities a = a(p,s) and s are the thermody
namic sound speed and the fluid entropy, respectively. In the 
perfect gas theory, 

and, as a result, / < 0 for all temperatures and pressures. It 
is easily verified that J is necessarily negative for any fluid, 
whether perfect or not, having pT/a> 1. 

As a numerical example we consider normal heptane (C7H16). 
Reid et al. (1987) report a critical density, temperature and 
pressure of 0.233 gm/cm3, 540°K and 27.04 atm. If we employ 
the Martin-Hou (1955) equation of state, we find that the 
minimum value of pT/a on the critical isotherm is 0.474. At 
the same point, the pressure is computed to be 0.923 pc ~ 25 
atm and the sound speed is found to be approximately 105 
m/s. It is clear from (1.3), and the value of pT/a, that the 
sound speed is a decreasing function of density or pressure at 
this point. This decrease becomes even more obvious when the 
above value of the sound speed is compared to the corre
sponding ideal gas, i.e., low pressure, value at the same tem
perature. This ideal gas value is given by the familiar formula 

(yRT)W2, where R is the gas constant for heptane. At T 
= 540°K, 7=1.032 and the sound speed is found to be 215 
m/s, which is approximately twice as large as the dense gas 
value. At the point where pT/a = 0.474, J < 0, and the Mach 
number decreases with density, if M < 1.38. If, on the other 
hand, the local Mach number is greater than 1.38, then J > 
0 and the nonclassical increase in M with density is observed. 
One naturally expects that sufficiently large local Mach num-

Journal of Fluids Engineering DECEMBER 1991, Vol. 113 / 675 

Copyright © 1991 by ASME
Downloaded 02 Jun 2010 to 171.66.16.104. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



bers can always be attained simply by increasing either the 
upstream Mach number or the stagnation pressure. 

One objective of the present study is to verify this nonclass
ical behavior for a range of commonly encountered hydro
carbons. The well-known Martin-Hou (1955) equation will be 
employed to compute the variation of the Mach number with 
density along an isentrope. Our choice of the Martin-Hou 
equation is due to its proven accuracy over a wide range of 
fluids. It is generally regarded as more accurate than the well-
known van der Waals or Redlich-Kwong equations of state. 
For example, we consider water at a temperature and density 
of 350°C and 0.0872 gm/cm3. The Martin-Hou equation then 
yields a pressure of 148.88 atm. which differs by only about 
0.6 percent with the accepted result of 148.02 atm recorded 
by Jones and Hawkins (1986). At the same temperature and 
density, the Redlich-Kwong and van der Waals equations yield 
a pressure of 157.25 atm and 163.93 atm, corresponding to 
errors of about 6 and 11 percent, respectively. The differences 
are even more dramatic at supercritical densities. For example 
at 400°C and 0.3584 gm/cm3, the Martin-Hou equation yields 
an error of only about 4 percent whereas the Redlich-Kwong 
and van der Waals equations result in errors of 33 and 131 
percent, respectively. It should be pointed out that the results 
presented in Section 2 have been predicted using rather general 
arguments and are expected to hold whenever pT/a becomes 
less than one. In particular, such nonclassical behavior should 
be anticipated regardless of the equation of state employed, 
provided only that the predictions of this equation of state are 
qualitatively correct. Thus, computations involving both van 
der Waals and Redlich-Kwong equations of state are also ex
pected to yield qualitatively similar results. 

The work presented in the next section is seen to be closely 
related to that of Bober and Chow (1990) who examined the 
dense gas corrections required in the isentropic flow of meth
ane. Our work demonstrates that striking qualitative differ
ences must be accounted for, particularly when slightly heavier 
hydrocarbons are considered. 

When it is recalled that the entropy rise across weak shock 
waves tends to be relatively small, it is at least reasonable to 
suggest that the Mach number change across oblique shocks 
might also differ qualitatively from that of the perfect gas 
theory. In the perfect gas theory, a compression corner gen
erates an oblique compression shock across which the Mach 
number decreases. In Section 3 we demonstrate that this de
creasing Mach number rule does not necessarily hold in the 
dense gas regime, particularly if pT/a < 1 at the pressures and 
temperatures of interest. Thus, not only is the isentropic theory 
of dense hydrocarbons qualitatively different but that involv
ing oblique shocks is as well. 

The fluids chosen for our study are hexane (C6HM), heptane 
(C7H16), octane (C8Hi8), nonane (C9H2o), and decane (CioH22). 
Each is recognized to be of the alkane series of which methane 
is the lightest. Data required for the Martin-Hou equation are 
the critical properties and the standard boiling temperature. 
Computations involving entropy, internal energy, and the en
thalpy require a knowledge of the ideal gas, i.e., low pressure, 
specific heats. In each case, the values of these parameters 
were taken from the data provided by Reid et al.(1987). Further 
details of the specific implementation are found in the articles 
by Cramer (1989) and Cramer and Best (1991). 

In each case illustrated, the flow was found to be entirely 
in the single-phase regime. The saturation data was estimated 
through use of Riedel's (1954) vapor pressure formula. Earlier 
editions of the text by Reid et al. have compared Riedel's 
formula to other commonly used equations and have concluded 
it is one of the more accurate models in use. 

As a numerical example, we consider octane and a point in 
the middle of the nonclassical regime depicted in Fig. 2.1. At 
a density of 0.4 pc, the temperature and pressure were found 
to be approximately 555°K and 19.8 atmospheres, respectively. 

H I 1 1 1 1 | 1 

\\ 

\ \ Heptane --, 

V / /"""v 

^- Decane 

-

/- Octane 

' /- Hexane 
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-

-

-

-

-

0.0 0.2 0.4 

Fig. 2.1 Variation of Mach number with density along isentropes. The 
stagnation states for each isentrope are recorded in Table 2.1. 

At this temperature, the saturation pressure was found to be 
approximately 20.4 atmospheres, which clearly demonstrates 
that the flow is in the single-phase regime, at least at this point. 
In our actual calculations, this comparison was automatically 
carried out for every point on the isentrope of interest. 

It is important to emphasize that the nonclassical effects 
illustrated here are due to the decrease in sound speed rather 
than phase-change effects. On the other hand, metastable con
ditions frequently give rise to values of pT/a < 1. The work 
presented here clearly shows that nonclassical effects must be 
anticipated if such metastable states are encountered in ex
perimental or numerical studies. 

2 Isentropic Flows 

The general scheme for the computation of isentropic flows 
is that developed by Cramer and Best (1991). Our approach 
is seen to be essentially the same as that outlined by Vinokur 
(1990). Stagnation properties, i.e., TQ, p0, where Tis the ab
solute temperature, are first specified. A density p < p0 is then 
specified and the corresponding temperature is found by nu
merical iteration of the isentropic condition 

s(p, T)=s0, (2.1) 

where s0 = s (p0, T0) is the stagnation entropy. Explicit expres
sions for the entropy, internal energy, and specific heat at 
constant volume have been given by Cramer and Best (1991). 
In order to save space we simply refer to this previous study. 
We note that the standard conditions of a stable thermody
namic equilibrium require that 

cv(p,T) = T-dS 

dT 
>0, 

where c„ is the specific heat at constant volume. Thus, the 
iteration process is well-behaved and unique. Once T is de
termined, the pressure p(p, T), sound speed a(p, 7), and en
thalpy h (p, T) are then computed through use of the equation 
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Table 2.1 Stagnation conditions for isentropes plotted in Fig. 
2.1. The symbol Vdenotes the specific volume (V = 1/p), the 
subscripts o denote stagnation conditions and the subscripts c 
denote properties at the thermodynamic critical point. The 
quantity Jmmis the computed maximum of / o n the isentrope. 
Fluid 

Hexane (C6HM) 
Heptane (C7H16) 
Octane (CgHlg) 
Nonane (C9H20) 
Decane (C10H22) 

0.7 
0.7 
0.7 • 
0.7 
0.7 

1.06 
1.06 
1.04 
1.04 
1.04 

Po 

Pc 

1.11 
1.85 
1.58 
1.62 
1.60 

• 'max 

0.05 
0.10 
0.20 
0.23 
0.18 

of state, the definition h = e+p/p, where e is the internal en
ergy, and the explicit form of the sound speed 

c„p dT 

The Mach number may be computed through use of the Ber
noulli equation: 

h(P, T)+—a2(p, T)=h0< (2.2a) 

where h0 = h(p0, T0) is recognized as the stagnation enthalpy. 
Rearrangement of (2.2a) yields 

{2(h0-h)}l/2 

M = . (2.2o) 
a 

Although it is not used explicitly in our computations, (1.1) 
is just the differential form of (2.2). That is, (1.1) is derived 
by combining the differential of (2.2) with Gibbs' relation 

dh = Tds + -dp 
P 

(2.3) 

and the condition of isentropic flow (2.1). Here we note that 
an alternate method for ensuring satisfaction of the isentropic 
condition (2.1) is to develop a set of differential equations in 
a manner similar to that of Leidner (1990), Bober and Chow 
(1991), or Cramer and Crickenberger (1992). 

The results of sample calculations of the Mach number ver
sus density variations are plotted in Fig. 2.1. The corresponding 
stagnation conditions are listed in Table 2.1. We have also 
employed (1.2) along with the computed values of M and pY/ 
a to compute and record the maximum values of J on each 
isentrope. 

A comparison of the curves for hexane and heptane or those 
for octane and nonane suggests that the nonclassical phenom
ena tend to increase in strength with molecular weight. This 
is indeed consistent with the observation that increasing mo
lecular complexity tends to increase the ideal gas specific heats. 
Increases in the specific heat tend to strengthen the sound speed 
decrease, resulting in smaller values of the scaled fundamental 
derivative pY/a. We may therefore conclude that, as the mo
lecular complexity increases, the region where / > 0 tends to 
become larger and the maximum value of J tends to increase. 

The results for decane would appear to contradict this con
clusion. However, at fixed density, the value of pY/a tends to 
decrease with temperature between the critical isotherm and 
the saturation line. Thus, the temperature drop associated with 
the isentropic expansion strengthens the nonclassical effect. 
Due to its relatively large specific heats, the temperature de
crease in decane is weak compared to that of octane and non
ane. Because the stagnation temperature used for decane is the 
same as that for octane and nonane, the corresponding tem
peratures along the isentrope for decane are somewhat larger 
than those of the two lighter fluids. Thus, the corresponding 
values of pY/a remain somewhat larger leading to a weaker 
nonclassical effect. It is easily verified that the nonclassical 
effect in decane can be strengthened considerably by decreasing 

SHOCK-

Fig. 3.1 Notation for oblique shock geometry. 

the stagnation temperature. For example, if we take V = 0.7 
Vc and T — 1.03 Tc, the maximum value of J on the isentrope 
is 0.26. 

Thus, the Mach number variation clearly differs from that 
of the perfect gas theory when dense gas effects result in values 
of the scaled fundamental derivative which are less than one. 
These differences are not only quantitative but qualitative. The 
practical significance of this result is seen when it is recalled 
that the classical treatment of isentropic flows employs the 
Mach number as a parameter for the computation of all other 
flow properties. However, the non-monotone character re
vealed here shows that this parameterization is no longer pos
sible. Clearly, for a given choice of M, as many as three values 
of density, temperature or pressure may be obtained. It would 
appear that a better choice of parameters would either be the 
density or pressure. 

Finally, we note that (1.1)—(1.2) may be combined with the 
standard differential forms of the isentropic condition (2.1), 
the quasi-one-dimensional mass equation and the Bernoulli 
equation to yield 

1 dM dp 

J M~ p 
= dP=3LdT=_M 

pa2 /3a2 T 

dv M2 dA 

v ~ 1 - M 2 A ' 
(2.4) 

where Gibbs' relation (2.3) and the definition of the coefficient 
of thermal expansion 

ldp_ 
'p dT 

(2.5) 
P 

have been employed. Here v is the particle velocity and A is 
the streamtube area. In the usual way, it may be shown that 
(2.4) requires that the particle velocity increases and the pres
sure decreases during an isentropic expansion (dp < 0). If the 
thermal expansion coefficient (2.5) is positive, as it is for the 
majority of gases, the temperature will also decrease during 
the isentropic expansion. Furthermore, the last term in (2.4) 
may be used to show that the supersonic flows discussed in 
this section may be generated through use of a conventional 
converging-diverging nozzle. We may therefore conclude that 
the remainder of the flow properties behave qualitatively the 
same as in the perfect gas theory, even though the Mach number 
variation is nonclassical. 

3 Oblique Shock Waves 
For the present purposes, the most convenient form of the 

shock jump relations are given by 

PiVni=P2V„2 = m, (3.1) 

P^P±=-m\ (3.2) 

vn = vt2, (3.3) 

H(pl,TuP2,T2)^h2-h1-^Y^ (P2-Pd = 0, (3.4) 

where V = p _ 1 is the specific volume, v is the particle velocity 
and the subscripts n and t denote the components of v which 
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are normal and tangential to the shock surface. The geometry 
and notation are also depicted in Fig. 3.1. The quantity m is 
the mass flux through the oblique shock and Eq. (3.1) is rec
ognized as the mass equation. Equations (3.2)-(3.3) represent 
the normal and tangential components of momentum. The last 
equation is the well-known Hugoniot relation, derived by com
bining jump conditions for the mass, momentum, and energy. 
The derivation of (3.1)-(3.4) may be found in any standard 
reference on gasdynamics, see, e.g., Thompson (1972) or An
derson (1990). 

The input data for our computation are the upstream ther
modynamic state (pi, Ti), the upstream Mach number Mi, and 
the downstream density p2. The latter condition is recognized 
as providing a measure of the shock strength. The analog in 
the perfect gas theory is the specification of either the flow 
deflection angle 6 or the shock angle a in addition to the 
freestream Mach number. In the present study, we restrict our 
attention to fluids having T > 0 everywhere. Thus, the shocks 
of interest will all be of the compression type and p2 will be 
chosen to satisfy p2 a p i. Because the upstream thermodynamic 
state is known, all other thermodynamic properties, e.g., pu 

h\, ct\, T,, etc., may be computed in a manner similar to that 
employed in the previous section. 

The downstream thermodynamic state is determined by solv
ing the Hugoniot (3.4) iteratively for T2. The general scheme 
is that already employed by Cramer and Crickenberger (1991) 
in their study of the dissipative structure of shock waves in 
dense gases. Once the downstream temperature is determined, 
all other thermodynamic properties may be computed. In par
ticular, the pressure p2 may be computed and (3.2) may be 
employed to determine the mass flux m. The normal com
ponents of the upstream and downstream Mach numbers are 
then determined by combining the mass Eq. (3.1) with the 
definition of the normal Mach numbers 

M n l = , Un2 = . 
«i a2 

In terms of the pressure jump, we find 

M„, = -
1 Pi-P\ 

(3.5) 

(3.6) 
Pfli\ V2-Vx) 

where / = 1 or 2. From the standard trigonometric manipu
lations, we find that the shock angle a is given by 

Mj 
(3.7) 

The flow deflection angle 6 is found by combining trigonometry 
with the mass and tangential momentum equations to yield 

? = <7-tan -i lei 
PI 

tana (3.8) 

For the purposes of comparison, we will also present results 
for perfect gases. The formulas employed are the standard 
ones found in any text on gasdynamics, see, e.g., Anderson 
(1990) or Thompson (1972). 

To illustrate the differences between the dense gas behavior 
and that observed in the perfect gas regime, we have examined 
octane which is initially taken to be at its critical temperature 
of 568.8°K and a density equal to 0.4 pc = 0.093 gm/cm3. 
The corresponding pressure and nondimensional fundamental 
derivative are computed to be 

r 

/7!«0.8673/?c»21.3 atm and — =0.47. 

For the fluids considered here the thermal expansion coefficient 
(2.4) is positive. As a result, the temperature will increase across 
each shock considered and T2 > T\ = Tc for each case. Thus, 
all shocks reside in the single-phase region of the p- V diagram 
and checks with the saturation curve were not necessary. 

Fig. 3.2 Variation of downstream Mach number with downstream flow 
deflection angle. Fluid is octane at an upstream temperature and pres
sure of 568.8° K and 21.3 atm. The broken lines denote computations 
based on the classical perfect gas formulas with 7 = 7 (568.8° K)~ 1.0273. 

According to (1.2), J{ < 0 if the Mach number is less than 
1.37 and is positive if Mj > 1.37. With these thermodynamic 
conditions as our upstream state we have computed the down
stream Mach number variation with the downstream flow de
flection angle for the cases Mi = 1.2, 1.6, 2.0, where Mi is 
the upstream Mach number. Plots are found in Fig. 3.2. As 
expected, both the M, = 1.6 and Mi = 2.0 cases show an 
initial increase in the downstream Mach number M2. Because 
Ji < 0 for the case M, = 1.2, it is also not surprising that M2 

initially decreases. For the purposes of comparison we have 
also plotted the results of the perfect gas theory. The value of 
7 employed in the perfect gas theory was 1.0273 which cor
responds to the value for octane at its critical temperature. 
Thus, the upstream states of both perfect and dense gas cal
culations are at exactly the same temperature. The perfect gas 
calculations are, of course, expected to be accurate at low, 
e.g., atmospheric, pressures whereas the dense gas results hold 
at the aforementioned pressure of 21.3 atm. 

Significant quantitative differences include a large increase 
in the detachment angle, that is, the maximum flow deflection 
angle which can be attained for a fixed upstream state. In the 
case depicted, the increase in the detachment angle is largest 
when the upstream Mach number is small. For example, at a 
freestream Mach number of 1.2, a shock wave in a perfect, 
i.e., low pressure, gas will be detached for wedge half-angles 
of 5 deg and above. However, at the higher pressure indicated 
above, the shock will remain attached for wedge half-angles 
as large as 11 deg. That is, the detachment angle in the dense 
gas regime is seen to be over twice as large as that in the low 
pressure regime. If, on the other hand, we consider a fixed 
wedge having a half-angle of 5 deg, more detailed calculations 
reveal that the detachment Mach number is Mld= 1.20 in the 
perfect gas limit and M i d = l . l l at the dense gas conditions 
employed in Fig. 3.2. If we take the onset of detachment as a 
crude indication of the onset of transonic flow effects, the 
results presented here strongly suggest that dense gas effects 
can narrow the transonic flow regime. Thus, the losses asso
ciated with transonic flows will be restricted to a smaller range 
of flow speeds. 

678/Vol . 113, DECEMBER 1991 Transactions of the ASME 

Downloaded 02 Jun 2010 to 171.66.16.104. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



A reasonable physical explanation for this narrowing of the 
transonic regime is related to the decrease of the intrinsic non-
linearity parameter (1.3). The appropriate form of the tran
sonic similarity parameter for general, rather than perfect, 
gases is 

M , - l 

P? 
K= 

where e is a measure of the disturbance strength and we have 
employed M?— 1 rather than 1 —Mi for this supersonic flow. 
For two flows with the same upstream Mach number, here we 
take M[ = 1.2, the flow detachment angles are therefore ex
pected to be related by 

£PG ' 
pT 

-£DG ' 
pV 

(3.9) 

where the subscripts PG and DG refer to the perfect gas and 
dense gas values, respectively. Thus, at the same freestream 
Mach number, the shock detachment angle is expected to be 
increased by the ratio of the fundamental derivatives. In the 
perfect gas case, we take 

a 

7 + 1 
=1.0137, 

where (1.4) has been employed and the ideal gas ratio of specific 
heats for octane was taken to be Y(568 .8°K) = 1.0273. At the 
pressure and temperature employed in Fig. 3.2, {pY/a)DG = 
0.47. Substitution of these values in (3.9) then yields the es
timate 

6^0-10.8° 

which is within about 6 percent of the computed detachment 
angle. That is, the fundamental derivative in the dense gas 
region is roughly half that in the perfect gas region. As a result, 
the detachment angle is roughly doubled. 

It should also be noted that the increase in detachment angle 
can also be observed at Mach numbers higher than those nor
mally associated with transonic flow. For the thermodynamic 
state corresponding to that of Fig. 3.2, the dense gas detach
ment angle is greater than the perfect gas angle up to a free-
stream Mach number of approximately 2.1. Above this Mach 
number, the dense gas shock wave detaches at smaller angles 
than the low pressure gas. The explanation may again be related 
to the size of the fundamental derivative. As indicated by the 
computed value of Ylt the flow originates in a region of rel
atively small pT/a. Because T is a measure of the intrinsic 
nonlinearity of the fluid and detachment is caused by this 
nonlinearity, the detachment is delayed as long as the average 
value of pY/a is small. Some justification for this claim is also 
seen by examination of the M]= 1.2 contours in Fig. 3.2. 
Because the shocks are relatively weak, both upstream and 
downstream conditions correspond to small values of pT/a. 
As a result, the differences between the perfect and dense gases 
are a maximum. On the other hand, the Mi = 2 curves cor
respond to flows which have been shocked out of the small 
pY/a region. Thus, less advantage is seen in these cases. 

Because the fundamental derivative varies with density, it 
is of interest to determine the variation of the detachment angle 
with the upstream density. Here we have reconsidered octane 
at its critical temperature, i.e., Tx = Tc ~ 568.8°K, and a free-
stream Mach number M) = 2. Under these conditions, the 
perfect gas detachment angle is approximately 31.4°. For ref
erence we also note that the detachment angle for a perfect 
diatomic gas (7 = 1.4) is approximately 23°, see, e.g., Thomp
son (1972) or Anderson (1990). The upstream density was 
varied and the detachment angle was computed. The results 
of these calculations are found in Table 3.1. Although the 

Table 3.1 Computed detachment angles 6d for various up
stream densities for octane. Here V = p'1 is the specific vol
ume. The upstream temperature and Mach number were Tc 

* 568.8°K and 2.0. 
K, 

Vc 

2.0 
2.5 
3.0 
3.5 
4.0 
4.5 
5.0 

Pi 

Pc 

0.936 
0.867 

' 0.798 
0.733 
0.676 
0.626 
0.582 

pr 
a 

Bd 

1 

0.41 28.4° 
0.47 34.0° 
0.55 38.0° 
0.62 40.9° 
0.67 43.0° 
0.71 44.7° 
0.74 45.8° 

Table 3.2 Detachment angles for various fluids. The sub
scripts DG and PG denote the results of dense and perfect gas 
calculations. Upstream states were taken to be Ti = Tc, pi = 
0.25 Pc and Mi = 1.5. 

Fluid i\i i \ , 

Hexane 
Heptane 
Octane 
Nonane 
Decane 

25.9° 
28.1° 
30.2° 
31.9° 
33.9° 

15.5° 
15.6° 
15.7° 
15.7° 
15.7° 

dense gas detachment angle is only about 8 percent larger than 
the perfect gas value when p! = 0.4pc(Ki = 2.5 Vc), this angle 
is approximately 46 percent larger than the perfect gas value 
whenp! = Q.2pc(Vi = 5.0VC). Inspection of the values of the 
scaled fundamental derivative upstream of the shock reveals 
that the upstream value of pY/a increases as V\ increases. 
Clearly, as F^oo, pY/a must approach the ideal gas value of 
1.0137. The reason the detachment angle increases is that the 
compression shocks necessarily take the flow back into the 
small pY/a region. It appears that the average value of pY/a 
is sufficiently small to delay the detachment. We also note the 
dense gas detachment angle is actually less than the perfect gas 
value at pj = 0j5pc. This turns out to be the approximate 
position of the local minimum in pY/a on the critical isotherm. 
By the arguments just given, we might also expect to obtain 
a relatively low detachment angle. This is due to the fact the 
compression shock takes the flow into the large pY/a region 
corresponding to liquid-like states. The typical downstream 
densities near the detachment state will be supercritical, i.e., 
p > pc. Values of the fundamental derivative can take on values 
between 5 and 10 in this region. Thus, the average value of 
pY/a is likely to be relatively large. 

As a final illustration of the increase in shock detachment 
angle we have computed this angle for each of the five hy
drocarbons listed in Table 2.1. In each case, the upstream 
temperature was taken to be the critical value for the fluid of 
interest and the density was taken to be one-quarter of the 
fluid's critical density. The freestream Mach number was taken 
to be 1.5. These detachment angles have been recorded in Table 
3.2 along with the corresponding perfect gas values. As with 
the calculations for octane, the ratio of specific heats employed 
in the perfect gas formulas is that evaluated at the upstream 
temperature. Under these conditions the dense gas effects in
crease the low pressure result by factors of 67-116 percent. As 
expected, the advantageous effects increase with molecular 
weight and specific heat. 

For these fluids, the ratios of specific heats are fairly close 
to one. As a result, the changes in the ideal gas 7 as each new 
fluid is considered is relatively small. Thus, at a fixed Mi, the 
changes in the perfect gas detachment angle are expected to 
be relatively small. This observation is borne out in the results 
recorded in Table 3.2. 

4.1 Summary 

The present study has given specific examples of nonclassical 
gasdynamic behavior in dense gases. The fluids discussed are 
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well-known hydrocarbons typically employed as fuels and en
countered in chemical processing applications. The physical 
reason for the unusual behavior can be traced to the existence 
of a region of decreasing sound speed found in the dense gas 
regime of many fluids. The results of our calculations clearly 
illustrate the dramatic differences between dense and perfect 
gases. 

Both the study of isentropic flows and that of oblique shock 
waves provide examples of qualitative differences with the 
perfect gas theory. An important consequence of the non-
monotone Mach number variation in isentropic flows is that 
the Mach number can no longer be used as the single parameter 
determining all other flow properties, at least when dense gases 
having moderately large specific heats are considered. 

Quantitative differences include large increases in the de
tachment angles for oblique shocks. A doubling of this angle 
is easily obtained for a wide variety of upstream states and 
fluids. Because the stagnation pressure losses are likely to be 
lower for attached shock waves, the flow of dense hydrocar
bons is expected to be more efficient than that at lower pres
sures or that predicted by the perfect gas theory. 

The nonclassical behavior predicted here is also expected to 
be observed when other dense gas equations of state are em
ployed. It is useful to note that the anti-intuitive behavior is 
a result of the natural dynamics of fluids of moderate com
plexity rather than numerical or experimental error. 

Future work will report the extent to which smaller phe
nomena occurs in other fluids and the influence on Mach 
reflection and shock-induced boundary layer separation. 
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Aerodynamic Sensitivity Analysis 
Methods for the Compressible 
Euier Equations 
A mathematical formulation is developed for aerodynamic sensitivity coefficients 
based on a discretized form of the compressible, two-dimensional Euler equations. 
A brief motivating introduction to the aerodynamic sensitivity analysis and the 
reasons behind an integrated flow/sensitivity analysis for design algorithms are 
presented. Two approaches to determine the aerodynamic sensitivity coefficients, 
namely, the finite difference approach, and the quasi-analytical approach are dis
cussed with regards to their relative accuracies and involved computational efforts. 
In the quasi-analytical approach, the direct and the adjoint variable methods are 
formulated and assessed. A Iso, several methods to solve the system of linear algebraic 
equations, that arises in the quasi-analytical approach, are investigated with regards 
to their accuracies, computational time and memory requirements. A new flow 
prediction concept, which is an outcome of the direct method in the quasi-analytical 
approach, is developed and illustrated with an example. Surface pressure coefficient 
distributions of a nozzle-afterbody configuration obtained from the predicted flow-
field solution are compared successfully with their corresponding values obtained 
from a flowfield analysis code and the experimental data. 

Introduction 
Computational fluid dynamics (CFD) has recently evolved 

to a level of maturity to simulate complex flows with reasonable 
fidelity to the flow physics. Among many reasons responsible 
for this emergence of CFD, probably the most important one, 
is the increased accessibility and hence the wide spread use of 
the supercomputers with high computing speeds and large 
memories. The aerodynamic design now more than ever enjoys 
the results of CFD as an important part of its database. An 
illustration of the major reasons which push and pull CFD to 
design is given in Fig. 1. 

Often the dilemma a designer is challenged with, however, 
is the conflicting targets derived from isolated CFD analyses 
for the individual components of an aircraft. An obvious rem
edy, whenever it is possible, is a combined analysis of the 
aerodynamics of an integrated structure. Examples for this 
include the airframe-propulsion integration (Murthy and 
Paynter, 1986) and the aircraft-stores integration (Baysal et 
al., 1991a). An important outcome of such an approach is the 
aerodynamic interference between the components. A draw
back, however, is the prohibitively high cost of performing 
flow analyses for a large matrix of parameters associated with 
a complex, multicomponent configuration. 

With this impetus, it is desirable to know the aerodynamic 
sensitivity of the instantaneous design to all the involved pa
rameters and thereby reduce the analysis matrix to include only 

Contributed by the Fluids Engineering Division and presented at the Winter 
Annual Meeting, Dallas, Texas, November 25-30, 1990 of THE AMERICAN SO
CIETY OF MECHANICAL ENGINEERS. Manuscript received by the Fluids Engineering 
Division October 9, 1990. 
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Fig. 1 The factors which push and pull the trend toward CFD for design 
(Murthy and Paynter, 1986) 

the parameters deemed most influencing. Also, a design op
timization algorithm requires the first-order gradients of the 
objective and the constraint functions. Determination of these 
gradients necessitates the aerodynamic sensitivity coefficients, 
that is, the derivatives of the objective and the constraints with 
respect to the design variables. Since in most optimization 
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procedures, a dominant contributor to the computational cost 
is the calculation of the sensitivity coefficients, it is desirable 
to develop efficient methods for this purpose. Generating the 
sensitivity coefficients by a finite difference approximation 
requires repeating the aerodynamic analysis with incremented 
values of the design variables. This simple approach has the 
disadvantage of being potentially computer intensive, partic
ularly when a complex set of governing equations are being 
used for the flow analysis. A preferable approach is to obtain 
the sensitivity coefficients directly and analytically from an 
appropriate set of equations to eliminate the costly and re
petitive flowfield analyses. 

The primary objective of this study is to present several 
methods to determine the aerodynamic sensitivity coefficients 
based on a discretized form of the compressible, two-dimen
sional Euler equations. Besides obtaining accurate values of 
these coefficients, a major concern is the computational fea
sibility of each one of these methods. By far, the dominant 
consumer of the computation time is solving the set of linear 
algebraic equations resulting from the sensitivity equation. 
Therefore, several methods are incorporated and assessed from 
the computational resources point of view. 

The sensitivity analysis has been widely used for structural 
designs in recent years (Adelman and Haftka, 1986), however, 
not for aerodynamic designs. Sobieski (1986) has made a plea 
to the CFD community for extending their present capability 
to include the sensitivity analysis. Elbanna and Carlson (1989) 
have presented a method to determine the sensitivity coeffi
cients for the nonlinear, transonic, small perturbation equation 
in two dimensions. Yates (1987) has used a boundary-integral 
method to calculate aerodynamic sensitivities for small per
turbation equations. In a survey paper by Dulikravich (1991), 
different aerodynamic shape design concepts have been pre
sented and classified. Among these concepts is the control 
theory concept which has been first applied by Lions (1971) 
to systems governed by partial differential equations, then 
applied to aerodynamic design by Jameson (1988). 

Conclusions that can be drawn from this literature survey 
are, first of all, there are very few investigations on aerody
namic sensitivity analysis, and they all are at their very early 
stages. The major contributors for such a phase lag in aero
dynamic and structural sensitivity analyses are the nonlinear 
nature of the fluid dynamic equations, existence of discontin
uities, such as shocks, and the difficulties associated with the 
aerodynamic surface and volume grid generation. Also, unlike 
most of the structural problems, the coefficient matrix of the 
sensitivity equation for aerodynamic is not symmetric. Only 
recently, due to the advent of the supercomputers with large 
memories, it has been possible to solve an aerodynamic sen
sitivity equation, since the size of a CFD grid is generally much 
larger than a structural grid. 

Sensitivity Analysis 
In order to demonstrate the determination of aerodynamic 

sensitivities, a design optimization problem has to be defined. 
That is, an objective function, its constraints, and pertinent 
design variables need to be identified. For this purpose, it is 
chosen to consider a nozzle-afterbody configuration, which is 
a nonaxisymmetric nozzle, with an internal and an external 
section (Fig. 2). A supersonic flow expands through the nozzle 
and mixes with the hypersonic external flow. The reasons for 
this particular problem can be itemized as follows: (i) Authors 
have produced two- and three-dimensional computational flow 
simulations for this configuration. Therefore, the computer 
program to solve the viscous or inviscid equations of single or 
multispecies gas flows is ready and benchmarked (Baysal et 
al., 1988, 1989, 1991b, 1991c). In the present paper, it will be 
referred to as the flowfield analysis code, (ii) Two and three-
dimensional experimental data on the flowfield are available 

-fixed length *. 

fixed thickness ^fcm\ if 
t ( 

-P = XD o 

~*" H„ 

J_*X 

- * • X 

K- - fixed length. 

Fig. 2 A nozzle-afterbody configuration: nonaxisymmetric, internal-ex
ternal nozzle expanding the supersonic flow to mix with the hypersonic 
freestream flow 

(Cubbage and Monta, 1990). (iii) The constraints for this op
timization process are relatively well established as a result of 
extensive high speed research on the National AeroSpace Plane 
(Doty et al., 1989). (iv) The configuration involves not only 
an external flow, but also an internal flow. Since the objective 
of the present paper is to demonstrate the derivation of the 
sensitivity coefficients and not the nozzle design, the problem 
is sufficiently simplified. The nozzle ramp and cowl contours 
are assumed to be straight lines and only their angles with the 
horizontal are varied. 

Therefore, it is desired to determine the angles of the nozzle 
ramp, a, and of the cowl, 13, that yield a maximum axial thrust 
force coefficient, F, subject to constraints, Gj. The angles a 
and /3 are the design variables, XD, for the present problem. 
Mathematically, it is required to get 

subject to 

max[F(Q(XD),XD)] 

Gj(Q{XD),XD)<Q>, y=l ,NCON 

X, n < Xry < Xj) 
lower upper 

(i) 

(2) 

(3) 

where F is the objective function, NCON is the number of 
constraints, and_Q is the vector of the conserved variables of 
the fluid flow. XD{ova and XD are the lower and the upper 
bounds of the design variables. 

The component of the axial thrust force due to nozzle wall 
shape, Faxial, is obtained by integrating numerically the pressure 
over the ramp and cowl surfaces. 

•Paxial= Pramp dy+\ Pcovll dy (4) 

This force is normalized by the force associated with the 
inflow given by, 

Fin Plh(l+yMjh)dy (5) 

In the case of an inflow parallel to the cowl with a constant 
Mach number^ this force is centered at the mid-point of the 
line segment kc, and its value is 

inflow = P,»(l+7M?A)/ftt (6) 

where Hlh is the throat height. By definition the axial thrust 
force coefficient is given by, 

•''axial 
F=- (7) 
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Fig. 3(a) Flow chart of an optimization procedure with sensitivity anal
ysis 

This axial thrust force coefficient is subject to three con
straints. First, the static pressure at the ramp tip, Ph is forced 
to reach a percentage C\ of the free-stream static pressure, Poo. 

Pi 
G , ( A i , ) = l -

C,P« 
-<0 (8) 

The other two constraints are due to the static pressure at the 
cowl tip, P„, being forced to fall within specified limits (C2 

and Ci) of the free stream static pressure, P&. 

G2(XD)=\~-^r<Q (9) 
C2Pa 

G3(XD) = 
C3P« 

— 1 < 0 (10) 

Although it is not done in the present paper, this nonlinear, 
constrained optimization problem can be solved using one of 
the well established optimization methods (Baysal and Ele-
shaky, 199Id). A flow analysis is performed every time the 
shape is perturbed by the optimization. The objective and the 
constraint functions are then recalculated using the new values 
of the flow properties. The direction and the magnitude of the 
next perturbation of the design variables are also determined 
using the flow properties. The objective function, constraints 
and their gradients are then used to determine the optimum 
design. The flowchart of this process is shown in Fig. 3(a). 

The derivatives of the objective function, F, and constraints, 
Gj, with respect to the design variables, XD, are given by 

V ~dXD~dXD
 + \BQJ ' dXD 

VGj= 
dGj dGj 

dXD~dXD~ 

dGj 

3Q dXD 
y=l ,NCON (12) 

These derivatives are calculated using two approaches, 
namely, the finite difference approach and the quasi-analytical 
(or sensitivity analysis) approach. 

Finite Difference Approach. A straightforward method to 
calculate the derivative of F and Gj is to use a finite difference 
approximation (Fig. 3(b)). For example, 

( b ) 
Flow Analysis 

X D = X J ) 

Compute F, G 

X D = X D + A X D 

Flow Analysis 

ComputeF, Gj 

Compute, V F 

j = l 

Compute, V G 

J=J + 1 
No 

j = NCON 

i = i + l No 

Yes 

i = NDV 

,Yes 

Fig. 3(d) Details of the finite difference approach 
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U R / a Q ) 3 Q / 3 X „ =BRldX0 
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|(aR/aQ)T.Ai = l3F/aQ)| 

I Compat. . V F | 

Compute, VGj j 

_| J = NCON j 

Fig. 3(c) Details of the quasi-analytical approaches 

d£ F[Q(XD + h),XD + h]-F[Q(XD),XD] 

dXD~ h 
(13) 

A serious shortcoming of this method is the uncertainty in 
the choice of the perturbation step size, h (Haftka and Malkus, 
1981). Also, this approach necessitatessolving for the flowfield 
with the perturbed design variable (XD+ti), which is partic
ularly expensive, when the numbers of both flowfield govern
ing equations and design variables are large. 

Quasi-Analytical Approach. The governing equations for 
the two-dimensional, steady, compressible, inviscid flow of an 
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ideal gas with a constant specific heat ratio written in the 
residual vector form are 

R(Q(XD),XD) = ¥+?£ = o (14) 

where/and g are the fluxes in generalized coordinates (£, »j) 
given by Baysal et al. (1988, 1989, 1991b, 1991c). 

The quasi-analytical approach (Sobieski, 1986) begins with 
the differentiation of Eq. (14) with respect to the design vari
ables to yield the sensitivity equation, 

37? 

3Q 

dQ 
dX, 

dR 

dXE 
'Rv (15) 

Two different methods are used in this approach to obtain 
the sensitivity coefficients, namely, the direct method and the 
adjoint variable method. 

_Direct Method. With this method, Eq. (15) is solved for 
dQ/dXD and substituted into Eqs. (11) and (12). Equation (15) 
needs to be solved once for each design variable, XD, so the 
direct method becomes costly when the number of design vari
ables is large (Fig. 3(c)). However, one of the advantages of 
this method is its use in predicting the flowfield solution with
out actually solving the governing equations of the fluid flow 
(Eq. (14)). This concept is inspired by the reanalysis used in 
the structural design optimization (Noor and Whitworth, 1986). 
Writting the Taylor-series expansion for Q(XD + AXD) about 
Q(X*D) gives, 

Q(XD + AXD) = Q(XD) + dg 
dXD 

AA^ + h.o.t. (16) 

Substitution of Eq. (15) into Eq. (16) results in, 

<iR{Q(Xp),XD) 

dQ 
AQ=-

dR(Q(XD),XD) 

dXn 
AXn (17) 

where AQ=Q(XD +AXD)-Q{XD). Equation (17) gives the 

changes in Q due to changesjn AXD. In other words, the 
flowfield_solutiqn, Q(XD + AXD), associated with a configu
ration, (XD + AXD), is obtained via Eq. (17), when the flow-
field solution, Q(XD), associated with the configuration, XD 

is given. This feature is very important, especially, when solving 
the flowfield governing equations is computationally costly. 

Prediction of the objective function, F, at a nearby config
uration (XD + AXD) can be obtained in two ways. The first 
way is the use of a Taylor series expansion for F 
[Q(X*D+AXD),X*D + ̂ XD] about F [Q~(X*D),X*D] as follows: 

=F 

Q^QiX^+AX},) 

+ (dF/dQ)T 

Q=QiX*D) Q=Q(X*D) 

•AQ + (dF/dXD) •AXo + h.o.t (18) 

Q=QiXD) 

The second^way to predict, F, value at a nearby configuration, 
(XD + AXD), is obtaining a predicted flowfield solution, 

Q(XD + AXD), using Eq. (17) first, and then computing it 
analytically using Eq. (7). 

Adjoint Variable Method. The adjoint variable method 
starts with substituting Eq. (15) into Eqs. (11) and (12) to yield, 

T 

J-'RV (19) 
dF 

dXD~ 
dF 

dXD 

Of. 

dGj 

dXD dXn 

dGj 

dQ 
^ = ̂ +[2m j - i R m y-=i,NCON (20) 

where J l_=[d_R/dQ] '. Then, defining vectors of adjoint 
variables (X^ A2;), that satisfy the following equations, 

dQ 

dGj 

dQ 
JT'^2j = "-^, y=l ,NCON 

(21) 

(22) 

Substitution of Eqs. (21) and (22) into Eqs. (19) and (20), 
respectively, yields 

dF dF -T 

-dxD
=WD

+X{Rv 

dXn -dxD
+X2jRv y=l ,NCON 

(23) 

(24) 

The adjoint variable method requires the solution of Eq. 
(21) and Eq. (22) once for each function Gj. Then, substitution 
in Eqs. (23) and (24) yields the derivatives of F and Gj. It 
should be noticed that the adjoint system of Eqs. (21) and (22) 
is independent of any differentiation with respect to XD; hence, 
the vectors Xi and \2j in Eqs. (23) and (24) remain the same 
for all XDi's of the vector XD. Therefore, if the number of 
adjoint vectors (NCON+1) is smaller than the number of 
design variables, the adjoint variable method is more efficient. 
Conversely, the direct method is more efficient when the num
ber of design variables is smaller. The flow chart of this method 
is given in Fig. 3(c). 

Both the direct and adjoint methods involve fewer com
putations than the finite difference approach, especially, when 
the number of design variables is large. One of the advantages 
of the sensitivity approach is that most of the elements of the 
jacobian matrix, dR/dQ, are already calculated in the flowfield 
solver; hence few computations are needed, as will be seen 
latter. Another advantage is _that, when solving for either the 
adjoint vectors or for (dQ/dXD), the coefficient matrix needs 
to be factorized only once for a given configuration. 

Solution Algorithms 

In order to analyze numerically the flowfield for a given 
configuration during the optimization process, Eq. (14) is solved 
by the implicit, upwind, finite volume scheme reported by 
Baysal et al. (1988, 1989, 1991a, 1991b), to force the residual 
to zero at each point of the computational domain. Equation 
(14) can be written in an upwind discretized form at a general 
point (ij) as follows: 

^ • j= [ / + (M, . + 1 / 2 j ) - / - (M,_ 1 / 2 , y ) 

+ 8 + (Mu+1/2) -g~ (Afw_ W2)]u 

+/,"+1 j(Mi+ U2j) -f*-ij(Mi+ mj) + §u+ i(Mu+ , /2) 

- iu-i(%ifl) (25) 
where/ + , / ~ ,g +, and g ~ are the operator-split in viscid fluxes, 
M represents the projected surface areas for these fluxes, and 
is associated_with the coordinate transformation metrics. Con
sequently, R at point (ij) can be viewed as a function of the 
Q values of the neighboring points. The differentiation of the 
residual expression to yield the jacobian matrix is then straight
forward. 

d[R(Qi: •)] V±l1y±l>A/}±l/2j'±l/2/j 

"arn i (26) 

°[Qi±ij±i\ 
However, it is necessary to revise the residual expression (25) 
at the boundary points to include the boundary conditions. 
The advantage of using an implicit scheme over other possible 
techniques is that most of the elements in the jacobian matrix 
are usually available when forcing the residual to zero, except 
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Fig. 4 
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A typical two dimensional grid used in the tlowfield computa-
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those elements at the boundary points if an implicit treatment 
of the boundary conditions is not used during the flow analysis. 
An important advantage of using an upwind scheme over a 
central difference scheme is that, in the latter, zero elements 
may appear in the diagonal. This causes the failure of the 
solution to the system of linear algebraic Eqs. (15), (21), and 
(22) if no pivoting is employed. 

Once the numerical values of all the elements in the jacobian 
matrix are obtained, the jacobian matrix can be assembled. 
The jacobian matrix has the dimension (nxn). In general, it 
is a banded block matrix with blocks of (4 x 4) for the two-
dimensional flow. For a two-dimensional computational do
main with I control volumes in the direction £ and J control 
volumes in the direction ij, the matrix dimension, n, is (41 J). 
For the first-order upwind discretization of the governing equa
tions, this yields a coefficient matrix with a half-bandwidth of 
4 ( / + 1). For instance, to analyze the flow for the example 
problem described in Fig. 2, a two-dimensional grid of 
(105x81) cells is used (Fig. 4). This results in a coefficient 
matrix which needs a computer memory of about 9.25 Giga
bytes. Hence, to reduce this enormous memory requirement, 
two types of storage techniques can be used, namely, a sparse 
matrix storage or a diagonal storage of the banded matrices 
(Pissanetzky, 1984). 

An important point is that ordering the unknowns of the 
linear systems (15), (21), and (22) influences the memory re
quirements. For example, when dealing with a supersonic flow 
in the streamwise direction and using an upwind scheme to 
solve the flow field, as it is the case herein, either the positive 
fluxes or the negative fluxes in the streamwise direction are 
zeros. Therefore, if the unknowns are ordered in the streamwise 
direction (^-direction), this results in a coefficient matrix with 
super- and sub-diagonal bandwidths 4(1+1) as shown in Fig. 
5(«). Whereas, if the unknowns are ordered in the normal 
direction (^-direction), this results in a coefficient matrix with 
super-diagonal bandwidth 4 ( / + l ) and sub-diagonal band
width of 7 as shown in Fig. 5(b). In the first type of ordering, 
it is required to store ((81+ 9)-41 J) elements, whereas in the 
second type of ordering, only ((4J+12)-S4IJ) needs to be 
stored. For the grid shown in Fig. 4, the unknown ordering 
of Fig. 5(b) provides a 60 percent memory saving over the 
ordering of Fig. 5(A). 

One difficulty which may arise, when solving for the adjoint 
vectors or (dQ/dXD), is that the coefficient matrix may be ill-
conditioned in spite of the nonzero diagonal elements. This 
requires the preconditioning of the matrix, whether an iterative 
or a direct method is used to solve the system of the linear 
algebraic equation. In the present study, the solution of either 

4 I J 

Fig. 5 The structure of the coefficient matrix (3fl/35) with the unknowns 
ordered in: (a) streamwise direction; (b) normal direction 

the adjoint vectors or (dQ/dXD), is achieved by using the 
standard Gauss elimination method after the off-diagonal ze
ros have been eliminated. 

The right-hand side of Eq. (15) is evaluated by differentiating 
the upwind discretized form given by Eq. (25) for the general 
point (ij) with respect to the design variables, XD as follows, 

dftj d(Mi+W2J) dffj d{M,-inj) 
dXD d(Mi+l/2J) 

d(Mu+W2) 

aft-u 

dXD d(M,-U2j) dXD 

d(Mjj+U2) djij 9(Mjj_ i/2) 

axD a(M,j^/2) dxD 

d(Mi+ W2j) 

9(M_ 1 / 2 j ) dXD 

diu-i d(M,j_1/2) 

d(Aft-1/2,7) , dfr+u 
I : 

r¥r^ + 

d(Mi+W2J) dXD 

&§u+i 3(Mu+l/2) 
d(Mij.l/2) dXD d(Mu+U2) dXD 

(27) 

As it is seen from Eq. (27), dR/dXD depends on the deriv
atives of the projected surface areas (M) with respectthe design 
variables. If an analytical expression for M=M(XD) exists, 
then this differention is straightforward. Otherwise, a finite 
difference approximation for dM/3XD with a small step size 
AXD can be used. 
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Table 1 Upstream flow conditions for the nozzle-afterbody 
configuration 

External Flow 
Internal Flow 

Mach no. T0, R° P0, psf 

6.000 885 51,984 
1.665 610. 3,960 

Fig. 6(a) Flow analysis for Xm = 18 deg 

Flow analysis 

Flow prediction based 
on 18° analysis results 

Symbol F 

0.13590 

0.13579 

Fig. 6(b) Comparison of the flow analysis and the flow prediction for 
Xm = 20 deg 

Fig. 6 Normalized pressure contours, PIPm of the nozzle flow 

Finally, the right-hand sides of Eqs. (21) and (22) are ob
tained by differentiating the Eqs. (7), (8), (9), and (10) with 
respect to the vector of conserved variables of the flow, Q. 

Discussion of Results 
An example case is chosen in order to investigate the methods 

used in calculating the aerodynamic sensitivity coefficients and 
to verify the accuracy and the feasibility of the flow prediction 
technique. The flow properties for this case are given in Table 
1. 
7"0 and P0 are the total temperature and total pressure, re
spectively. The above upstream conditions are kept constant 
for all the results presented in this study. The experimental 
data for this test case is given by Cubbage and Monta (1990). 

The first set of results helps studying the accuracy of the 
flow prediction technique. Hence, flowfield solutions for two 
configurations, where one is obtained by a small perturbation 
of the other, are obtained by solving Eq. (25). One of the 
configurations has X£>1 = 20 deg and XDl = 12 deg, while the 
other configuration has XDx = 18 deg and XDl= 12 deg. That 

-0.3 

0 

Cp 0.3 

0.6 

0.9 

Flow prediction results 
Flow analysis results 
Experimental data 

0 6.0 12. 15. 
Normalized axial distance, X/t-%, 

Fig. 7 Pressure coefficient distributions on the ramp surface obtained 
from different numerical approaches in comparisons with the experi
mental data (Cubbage and Monta, 1990) 

is, changes in XDj and XDl are 2 and 0 deg, respectively. 
Equation (17) is solved for the changes in Q (i.e., AQ) due to 
the above changes in XD. The jacobian matrix and the right-
hand side of Eq. (17) are evaluated using the flowfield solution 
(Fig. 6(a)) associated with the configuration (XDl = l8 deg, 
XD2=12 deg). The predicted flowfield solution associated with 
the configuration (XDl = 20 deg, XDl = 12 deg) is then obtained 

by adding the computed changes in Q to the flowfield solution 
associated with the configuration (XD{ = 18 deg, XDl =12 deg). 

The normalized pressure contours obtained via the flow 
prediction technique are successfully compared with their cor
responding contours obtained by the flow analysis code (Fig. 
6(b)). It is also seen from this figure that the axial thrust force 
coefficient, F, obtained using the flow prediction results differs 
only by 0.079 percent from that obtained using the flow anal
ysis solution. However, when Eq. (18) is used to predict the 
axial thrust force for (XDx = 20 deg, XDl = 12 deg), it is found 
that its value (0.13273) differs by 2.33 percent from that ob
tained using the flow analysis solution. This increased error is 
due to the presence of two types of approximation errors that 
affect the value of F obtained via Eq. (18). These are the 
truncation error associated with Eq. (18), and the truncation 
error associated with Eq. (17), which enters Eq. (18) through 
AQ. On the_other hand, when using the predicted flowfield 
solution, Q(XD + AXD), only the second type of approxima
tion error affects the predicted value of F. The surface pressure 
coefficient (Cp) distributions on the ramp obtained from the 
predicted flowfield solution are compared in Fig. 7 with their 
corresponding values obtained via the flow field analysis code 
and the experimental data. Examination of this figure indicates 
that the numerical results agree with each other as well as with 
the experimental data. The slight discrepancy with the data is 
attributed to the viscous effects that are not described in the 
governing equation of the flow (Eq. (14)). The results shown 
in Figs. 6 and 7 demonstrate the accuracy of predicting the 
flowfield solution when XDi is perturbed by 10 percent. Sim
ilarly, predictions of the axial thrust force coefficient, F, for 
the configuration ( ^ , = 20 deg, ^ = 1 2 deg) are given in 
Table 2 based on the perturbations of XDl by -25, - 10, 5, 
and 25 percent. 

Although the errors are relatively small for the indicated 
range of XDi perturbations, they grow with the increasing 
perturbation of XDv as expected. With this table, it is verified 
that using Eqs. (7) and (17) yields smaller error than that 
obtained when using Eq. (18). 
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Table 2 Percent prediction errors in axial thrust force coef
ficient, F, using different methods 
% Change in XD % Error in predicted F" % Error in predicted Fb 

Table 3 Execution times to solve the system of linear algebraic 
equations in the quasi-analytical approaches 

-25 
-10 

5 
25 

5.461 
-2.331 
0.197 
4.310 

-1.857 
-0.079 
-0.069 
-1.767 

All results are obtained for AXD, = 0 
F —F„ 

% error in F=-E——"- * 100, where subscripts (p) and (a) refer to 
Fa 

the predicted value and the value obtained by flow analysis code, 
respectively. 
'"'F values are obtained using Eq. (18). 
{b)F values are obtained using predicted flowfield solutions (Eqs. (7) 
and (17)). 
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Fig. 8 Variation of the normalized sensitivity coefficient with the per
cent perturbation of the design variables for three methods, (a) Design 
variable is XDU (b) Design variable is Xm 

Next, the different methods used to calculate the sensitivity 
coefficients are compared for a configuration (XDl = 20 deg 
and XD2= 12 deg) and presented in Fig. 8. Only the derivatives 
of the objective function, F, with respect to design variables 
are considered. Obtaining these derivatives via the finite dif
ference approximation Eq. (13) requires the perturbation of 
each design variable, XD, by a step size AXD. Then, the flow-
field is computed for each new XD using the flow analysis code. 
Since the best value for AXD is not known a priori, different 

Technique Execution time 
Sparse matrix technique 

Banded matrix solver 
.(without pivoting) 

Banded matrix solver 
(with pivoting) 

22.5 
1.0 

1.4 

All times are normalized by the time required for the banded matrix 
solver (without pivoting). 
Grid size (105x81). Number of design variables = 2 

Table 4 Execution times to compute the sensitivity coeffi
cients of the objective function, V f 

Approach Time 

Finite difference approximation 2.872 
(3 flowfield solutions) 

Direct method 1.000 
(1 flowfield solution plus sensitivity coefficients 

via banded solver) 
Adjoint variable method 0.970 

(1 flowfield solution plus sensitivity coefficients 
via banded solver) 

All times are normalized by the time required for the direct method. 
Grid size (105x81). Number of design variables = 2. Number of 
adjoint vectors = 1. 

values of AXD are attempted. The sensitivity coefficients ob
tained via all three methods are normalized by the sensitivity 
coefficients obtained by the direct method, where Eq. (17) is 
evaluated using the flowfield solution associated with (XD] = 20 
deg, XDl= 12 deg). The results of the direct and the adjoint 
methods are identical. However, the results of the finite dif
ference method deviate significantly from the quasi-analytical 
results. This reconfirms the findings of the previous investi
gations, (Haftka and Malkus, 1981), that the finite difference 
method results are dependent on the step size (Eq. (13)). 

Two different numerical techniques are used to solve the 
systems of linear algebraic equations that arise in the quasi-
analytical approaches; namely, the sparse matrix technique and 
the banded matrix technique. Comparison of the two tech
niques as used in the present study, reveals that their memory 
requirements and the numerical accuracies are the same, 
whereas, their execution times are significantly different. Pre
sented in Table 3 are the execution times required to solve the 
system of linear algebraic equations associated with a grid of 
size (105 x 81). This linear system has a square coefficient ma
trix with 33,280 rows. As can be seen in this table, the sparse 
matrix technique is less efficient, since it does not take ad
vantage of the banded structure of the matrix. 

The computational times to obtain the sensitivity coefficients 
of the objective function, F, by all three methods are given in 
Table 4 for two design variables. The system of linear equations 
arising from the quasi-analytical approach is solved using the 
banded matrix technique in which Gauss elimination without 
pivoting is used. 

It is concluded from Table 4 that the adjoint variable method 
requires less time than the direct method. This is because there 
is only one adjoint vector (i.e., A] for F) to be solved for when 
using the adjoint variable method. Whereas, in the direct 
method^there are two conserved variable derivatives, (dQ/ 
dXDl,dQ/dXD2), to be solved for. In other words, the differ
ence in the total execution time of the two methods is due to 
the extra time required for the forward and backward substi
tutions of the direct method. Also, the time required by the 
finite difference approximation is higher than that required by 
the direct method and the adjoint variable method. This is due 
to the repetitive flowfield analyses. 
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Conclusions References 
A mathematical development of the aerodynamic sensitivity 

coefficients, based on a discretized form of the compressible, 
two-dimensional Euler equations, are presented for a nozzle-
afterbody configuration. Three methods are used to determine 
these sensitivity coefficients, namely, the finite difference 
method, the direct method, and the adjoint variable method. 
A comparison between these methods indicates that the finite 
difference approximation deviates from the quasi-analytical 
methods ±5 percent for design variable changes, up to ±5 
percent. The direct and the adjoint variable methods yield 
identical results. Furthermore, both the direct and the adjoint 
variable methods are computationally more economical than 
the finite difference method in obtaining the aerodynamic sen
sitivity coefficients. However, the direct method is more eco
nomical than the adjoint variable method when the number 
of design variables is less than the number of adjoint vectors 
(the number of constraints plus one). 

The systems of linear algebraic equations that arise in the 
direct and adjoint variable methods are solved using two tech
niques based on the standard Gauss elimination, namely, a 
sparse matrix technique and a banded matrix technique. A 
comparison between these techniques indicates that they give 
the same solution accuracy and require the same amount of 
computer memory. However, the sparse matrix technique is 
not economical for solving the above systems of equations. 

A flow prediction and an objective function prediction con
cepts are developed for a nozzle-afterbody configuration. The 
predicted flowfield solution is successfully compared with the 
flowfield solution obtained via an analysis code. Also, the 
surface pressure coefficient distributions on the ramp of the 
nozzle-afterbody configuration obtained from the predicted 
flowfield solution are successfully compared with their cor
responding values obtained from both the flow analysis code 
and the experimental data. Moreover, a parametric study is 
performed to determine the error in the predicted objective 
function as it varies with changes in a design variable. This 
study indicates that the error grows with the increasing change 
in the design variables; however, it is less that 2 percent for 
the nozzle-afterbody design variable change up to 25 percent. 
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Gravity-Driven Motion of a Layer 
of Viscoelastic Fluid Around a 
Horizontal Wire 
A theoretical study of the free-surface flow of a viscoelastic fluid around a horizontal 
cylinder is reported in this paper. The fluid layer has initially a uniform thickness, 
and, at some instant of time, it starts to flow due to the presence of a gravity field. 
The result sought is the film thickness as a function of time and angular position. 
The mass- and momentum-conservation principles are employed in conjunction with 
the Maxwell constitutive equation. Using an integral method, a system of two 
nonlinear equations is obtained. The results are compared with the ones for a 
Newtonian fluid, and the elastic effects are shown to change dramatically the flow. 

Introduction 
The present paper is concerned with the flow of a thin layer 

of non-Newtonian fluid around a horizontal cylinder due to 
gravity. The analysis of such a motion is of industrial interest 
since, when horizontal wire coating is employed, the gravity 
effect causes the liquid coating material previously deposited 
to flow around the wire before solidification in the oven. This 
causes an eccentric coating layer, which is highly undesirable. 

Therefore, prediction of the fluid motion around the wire 
is desirable to control the eccentricity of the deposited layer 
of electrical insulation. This flow has already been studied 
previously for a Newtonian fluid (Souza Mendes, 1989). How
ever, the coating material employed in this application is gen
erally a varnish, which consists of a solution of a synthetic 
resin in drying oil (Rodriguez, 1989). This polymeric solution 
displays a viscoelastic behavior, and the Newtonian model for 
the stress field is not applicable. 

The present research is concerned with a qualitative analysis 
of viscoelastic effects on the flow of the fluid layer. In this 
connection, the Maxwell model (see for instance Bird et al., 
1987) was selected as the constitutive relation for stress. 

The Analysis 
The motion under study is represented in Fig. 1. At time /* 

= 0, a fluid layer of uniform thickness 5o is deposited around 
a horizontal cylinder (or wire), and a gravity field g directed 
downward is switched on (Fig. 1(a)). At some layer time t*, 
the fluid has moved downward due to gravity (Fig. 1 (£>)). In 
this configuration, surface tension effects are important, and, 
due to motion, viscoelastic forces also arise. For this sought-
for application, the film thickness is typically very small, gen
erally of the order of 1 or 2 percent of the wire radius. 

The solution of the present problem is obtained by following 
the same path as the one described by Souza Mendes (1989), 
with the appropriate adaptations for the non-Newtonian be-

t*-o t*=t* 

(a) (b) 

Fig. 1 Schematic of the problem 

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEBRING. Manuscript received by the Fluids Engineering Division 
August 16, 1990. 

Fig. 2 The control volume Cv 

havior. For completeness, however, the whole analysis and 
procedure employed in the present paper is described in what 
follows. 

The principles of mass and ^-momentum conservation are 
evoked, and applied to the deformable control volume Cv 
shown at some instant t* in Fig. 2. 

In this two-dimensional analysis, the fluid density p is as
sumed to be invariant. The velocity field is given by u = u*er 
+ v*ee. V* stands for the velocity component v* evaluated at 
the interface, i.e., 

V*(6,t*) = v*(R + b*,6,t*) (1) 
where S*(0, t*) is the film thickness, measured in the radial 
direction, at some instant and 8 location. 

There exists a pressure difference Ap across the interface, 
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due to the surface tension. Since the present study is focused 
on very thin films (<5* < < R), the curvature radius of the 
interface is nearly constant and close to R + 5Q (Markovitz 
et al., 1972, Krupiczka, 1985), where 8$ is the initial (and 
uniform along 6) film thickness. Therefore, if a is the surface 
tension, 

a 
Ap = 

R + b*n 
(2) 

Conservation of Mass. The continuity equation for the 
control volume Cv shown in Fig. 2 is (n is the unit vector 
normal to the control surface CS): 

0 = u-ndA 

= \ \X'MA+ \ vMA+ \ wndA + \ wndA (3) 
J] Jo J-5 <JA 

2, 

j , J 2 °3 °A 

At surface 1, u = 0, and hence \iwndA = 0. At surface 

d8* 
u = —— er+ V*e« and n = coso:er-sinaes. 

dt* 

Then, at surface 2, 

db* 
u«/i= ( —rz- V*\aaa )cosa. 

\dt* 

Now it is observed that 

1 88 88* , db* 88* 
tana = ——— -— and —— = — + — ... „„ 

R + 8* 88 dt* dt* R + 8* 86 

(4) 

(5) 

(6) 

Substituting the above equations into Eq. (5), the dot product 
u«« becomes simply equal to db*/8t* cosa, and 

f 88* 
^wndA=—(R + b*)A6, (7) 

where, assuming a unitary length along the third direction, dA 
was replaced by (R + 8*)dd/cosa. 

It can be seen that 

1 U'MA + I U' 
J 3 •U 

MA 
8_ 

'86 S 5* 

n 

dr,* Ad (8) 

where ri* = r — R. 
Now, Eqs. (7) and (8) are plugged into the continuity equa

tion (Eq. (3)), yielding 

• vdri 
8*\88* 0=ll+i)^+ih b*V* (9) 

where T\ = T\*/8* and v=v*/V*. 
The above equation is then made dimensionless, giving 

95 8 'I V8\ vdr) 

where 

(10) 

(11) 

g being the acceleration due to gravity. 

Conservation of Linear Momentum. In the ^-direction, the 
principle of conservation of momentum gives, when applied 
to the control volume Cv shown in Fig. 2, 

8(pv*) 
Fr + Fe 

dt* 
tfv+ I v*pwndA. (12) 

The contact forces Fc are due to the shear stress (T^ = T*e) 
at surface 1 and to the normal stress Tee acting on surfaces 3 
and 4. The contribution of fluid motion to normal stresses is 
generally very small (TJ« = 0, or Tee - - Ap), and it is common 
practice to neglect this effect in engineering analyses. For the 
present flow geometry and a Newtonian fluid, this hypothesis 

Nomenclature 

1 = 

er = 

eo = 

Fc = 

Fe = 

8 = 
g = 
G = 
h = 

P 
r 

R 
Re 

t = 

unit tensor, dimensionless 
unit vector in r-direction, 
dimensionless 
unit vector in 0-direction, 
dimensionless 
contact forces in ^-direc
tion, N 
external forces in 0-direc-
tion, N 
magnitude of g, m/s2 

acceleration due to grav
ity, m/s2 

elastic modulus, N/m2 

angular spacing between 
nodal points, dimension
less 
unit vector normal to and 
directed outward the con
trol surface CS, dimen
sionless 
pressure, N/m2 

radial coordinate, m 
wire radius, m 
Reynolds number, = 
pR\fgR/lj,, dimensionless 
dimensionless parameter, 
= pgR2/a 
dimensionless time, 

t* 
T 

T„ 

V = 

time, s 
stress tensor field, N/m2 

//-component of T, N/m2 

velocity field, m/s 
radial component of u, 
m/s 
dimensionless tangential 
velocity, =v*/V* 
tangential component of 
u, m/s 
dimensionless tangential 
velocity at interface, 
= V*/\fgR 

V*(6,t*) = tangential velocity at in
terface (Eq. (1)), m/s 

a = angle between n and er 

(Fig. 2), dimensionless 
first Rivlin-Ericksen ten-

ir, = gradu + (gradu)r, 
s _ 1 

//'-component of y, s _ 1 

dimensionless layer thick
ness, = 8*/R 

8*(8,t*) = layer thickness (Fig. 
Hb)), m 
dimensionless initial layer 
thickness 
initial layer thickness 
(Fig. 1(a)), m 

y = 

y-u 
8 

fin = 

5n* = 

Ap = 

At 
A8 

T = 

X = 

X* = 

M = 

p = 
a = 
T = 

pressure jump across in
terface due to surface 
tension, N/m2 

time step, s 
angular width of control 
volume Cv (Fig. 1(b)), 
dimensionless 
dimensionless radial co
ordinate, = ri*/b* 
radial coordinate (Fig. 2), 
= r-R, m 
angular coordinate, di
mensionless 
Deborah number, =XV 
\lR/g, dimensionless 
characteristic time of 
fluid, s 
fluid viscosity, kg/ms 
fluid density, kg/m3 

surface tension, N/m 
deviatoric stress tensor, 
= T + p l , N/m2 

//'-component of T, N/m2 

dimensionless shear stress 
at cylinder surface, = T*,/ 
PgR 
shear stress at cylinder 
surface, = TJR, 6, t*), 
N/m2 
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has been tested for a few cases. The results of these tests 
indicated that this simplifying assumption is also reasonable 
for the present flow. Therefore, the following expression has 
been used for the contact forces Fc: 

dh* 
FC=-T*RA6-AP—A8, (13) 

where Ap is given by Eq. (2). It is observed from Eq. (13) that 
the surface tension effect depends directly on the thickness 
gradient along 6, the derivative dd*/dd. 

The shear stress at the wall r£ is evaluated from the linear 
viscoelastic constitutive relation, in conjunction with the mod
ulus of relaxation of the Maxwell fluid (see for instance Tanner, 
1985): 

where T* is the deviatoric stress tensor; /x is the fluid viscosity; 
X* is the relaxation time; and y is the first Rivlin-Ericksen 
tensor. Observing that -yrt = (V*/8*)dv/d-q and that i% is the 
magnitude of the r8 component of T* evaluated at the wall, 
the following dimensionless expression may be written: 

t-t'\Vdv~] 
exp| -—-—|— — dt 

•'o 
a M ) = xU' e 

5 drj 
(146) 

where r„ = r%/pgR, Re = pR\JgR/^ is the Reynolds number, 
and X = \*/\/R/g is the Deborah number. 

The external forces Fe are due to gravity, and hence given 
by 

Fe = pgsmO(R + y*)dO dt]* = pgsmo IR8* + —- j Ad. (15) 

The first term on the right-hand side of Eq. (12) may be 
written as 

d(pv*) 

v dt* 

dv* 
tfv = PA0 — (R + V*)dv* 

dt 

= pgR28A6 
[' d{vV) 

Jo dt 
(l+8r,)dr, (16) 

If the same reasoning employed to obtain the mass conser
vation equation (Eq. (10)) is followed while working on the 
right-most term of Eq. (12), the expression below is obtained 
with no particular difficulty: 

v*pwndA 

35* 
H dt* dd 

5*V2\ v-
•>o 

dt] pAd (17) 

Now Eqs. (2), (9), (12), (13), (15), (16), and (17) are com
bined, yielding, after some algebra, the following dimension-
less equation: 

-̂ -fcVl̂ Hh 
t^« + 8ri)dri + 8 — V2 \ v2dr, 

0 

V\ vdri (18) 

where S = pgR /a. 
Equations (10) and (18) are subjected to the following initial 

conditions: 

V(d, 0) = 0; and5(0, 0) = 50 

The boundary conditions are: 

(19) 

V{0, t) = K(TT, 0 = 0; and — (0, 0 = - (TT, t) = 0 (20) 
00 00 

Evaluation of the Integral Terms. Further inspection upon 
Eqs. (10), (146), and (18) shows that there are four terms where 
the tangential component v = v*/V* of the velocity appears, 
three of them involving integrals, and the fourth involving a 
derivative evaluated at the wall. The evaluation of these terms 
require the knowledge of the function v*(r], 6, t). 

In the present work, a sinusoidal profile of the form v = 
sin(7rr;/2) was adopted. This profile yields excellent results 
when used in conjunction with the integral momentum equa
tion for the boundary layer flow past a flat plate. Moreover, 
results were also obtained with a linear profile (y = »/), and 
comparisons showed that the thickness 5(0, t) is rather insen
sitive to the profile assumption. The assumed profile is used 
in the four terms mentioned above, the following results are 
obtained: 

r1 2 r1 , i dv 
v dr) = -; trdrj = -; — 

J 0 I J 0 l 01) 

J 0 a, 

, = 0 

V) 2 / 2 \dV 
3 ^ ( l + 5 ^ = - l + - 5 -

1-%) + { y 

(21) 

V88 

5 dt 

With the above results, the final form of the governing 
equations can be obtained: 

„ „, 95 2 d(VS) n 

( 1 + S ) - + - J 7 T 2 = 0 
dt -K do 

(22) 

and 

l~« + 1 1 V5 
95 
dt 

1 

25^ 

7T 
l + ^ 5 

IT 

5(1+50) 

'i-l*-1 
Vbl 

-VY-L 
TT/ ) do 

dV 
de 
--5Tw-sind{ l + z ) 5 ^ 

(23) 

The problem under study is governed by the above partial 
differential equations for 5 and V, together with the initial and 
boundary conditions given in Eqs. (19) and (20). The dimen
sionless shear stress TW that appears in Eq. (23) is given by Eq. 
(146). 

It can be seen that the parameters that influence this physical 
situation are S, Re, X and the dimensionless initial film thick
ness 50. S is the ratio between gravity forces and forces due to 
surface tension; the modified Reynolds number Re compares 
gravity forces with viscous forces; and the Deborah number 
X is the ratio between a characteristic time of the fluid and a 
characteristic time of the flow. The characteristic time of the 
fluid, i.e., the relaxation time, gives the order of magnitude 
of the time duration of the fluid's "memory." 

Method of Solution 
It can be observed that Eqs. (22) and (23) form a nonlinear 

system of partial differential equations. The Crank-Nicolson 
implicit scheme was employed to generate the algebraic dis
cretization equations, which were solved with the aid of the 
Thomas algorithm together with an iterative scheme. 

For a given instant of time, this iterative scheme consisted 
basically of (i) assuming initial guesses for 5 and V; (ii) solving 
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the set of algebraic equations generated from Eq. (22) using 
the Thomas algorithm and the initial guesses for 5; (iii) solving 
the set of algebraic equations generated from Eq. (23) using 
the Thomas algorithm and the present values of V; (iv) going 
back to step (ii), but now using the present values of 8; (v) 
proceeding in this manner until convergence is achieved. The 
initial guesses mentioned above were just the values at the 
previous time step. Convergence was typically achieved in three 
to four iterations. 

The numerical evaluation of the hereditary integral that ap
pears in the expression for T„ (Eq. (14ft)) is rather straight
forward. At t = 0, TW = 0. At t + At, 

TJ6, t + At) = exp ( - y J rjfi, t) 

1 7T 

XRe 2 J, exp 
t + At-t'\V 

dt' (24) 

The integral in the above equation may be transformed at 
each time step, via the trapezoidal rule of numerical integra
tion, into an algebraic expression involving V and 6 evaluated 
at / and t + At. This expression is employed recursively to 
evaluate rw (0, t + At). 

Due to symmetry, the solution domain in 6 is from 0 to -w. 
The grid employed was uniform, with 33 nodal points in 6 and 
time steps varying from case to case in the range 0.01 to 0.1, 
depending upon the Reynolds number Re and on the Deborah 
number X. 

Numerical Uncertainty. A grid-independence test per-
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Fig. 6 Tangential velocity versus angle for various times 

formed attested to the accuracy of the results obtained with 
the grid distribution utilized in the final runs. For a typical 
case (namely, S = 0.2, Re = 50, X = 100, and t = 2), the 
dependence of the layer thickness 5 at 6 = 0 deg on the angular 
spacing between nodal points h and on the time step At has 
been investigated. This is illustrated in Figs. 3 and 4. 

The uncertainty of the numerical results was estimated as 
follows. An estimate of the exact value of 5(0), i.e., the solution 
for h = 0 and At = 0, was obtained with the aid of a two-
variable (h and At) Taylor series expansion up to the second-
order terms. The evaluation of the five partial derivatives in
volved was done via finite differences, which required extra 
computer runs to obtain solutions for eight other combinations 
of h and At in the vicinity of the result pertaining to h = w/ 
32 and At = 0.01. Using this extrapolated result as a basis for 
comparison, it was found that the numerical uncertainty of 
the result for the typical case analyzed is below 1.0 percent. 

Results and Discussion 
Attention will now be turned to the numerical results. All 

results reported in the present paper pertain to an initial thick
ness <5o = 0.02 and to S = 0.2; the investigation was focused 
on the effects of the Deborah number X and Reynolds number 
Re. 

Figure 5 shows the variation of the film thickness <5 with the 
angular position 6, for the case of Re = 50 and X = 100. 
Comparing this figure with Fig. 3 of Souza Mendes (1989), it 
is seen that the viscoelastic behavior of the fluid plays an 
important role on the flow. 

At instant t = 0, the film thickness is uniform and equal 
to its initial value 50- As time ellapses, the fluid falls around 
the cylinder due to gravity, and therefore the film thickness 
at the upper region diminishes, whereas at the lower region 
the thickness increases. 

However, once a thickness gradient in the 6 direction is 
established, a force due to surface tension appears, and acts 
to balance the gravity effect. Furthermore, the viscoelastic 
force is also present to influence the fluid motion. In contrast 
to what was observed for the Newtonian fluid in this Re range 
(Souza Mendes, 1989), the fluid acquires an oscillatory motion, 
which induces a wavy surface in the 6 direction. 

The behavior of the tangential velocity at the interface is 
illustrated in Fig. 6 for the same case shown in Fig. 5. It can 
be seen that the fluid accelerates very fast at the onset of the 
motion, when the only force acting on it is gravity. Soon surface 
tension and viscoelastic effects become important, and the 
velocity distribution V(d, f) reaches high positive values at some 
early instant of time and then starts to oscillate with smaller 
magnitudes and changing sign periodically. Moreover, the ve
locity of maximum magnitude occurs at different 6 locations 
for different times, and with different magnitudes. 

Figure 7-11 show the variation of the film thickness at 6 = 
0 deg with time, for different values of the modified Reynolds 
number Re. From its definition, it can be seen that low values 
of Re indicate high fluid viscosity, and vice-versa, for a given 
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cylinder radius and gravity field. Figures 7-11 differ in the 
values of the Deborah number, which is equal to 0.001, 0.01, 
1.100 and 105, respectively. 

As expected, it is observed in these figures that, independ
ently of the value of the Deborah number, for infinite fluid 
viscosity (Re = 0), the fluid flows at infinitely small velocity, 
and no change in thickness is observed. 

At the other extreme, when XRe — °°, there is also no 
dependence on X. This is illustrated by comparing the curves 
for Re = 5 x 105 of Figs. 9, 10, and 11 with one another 
(XRe = 5 x 105, 5 X 107, and 5 x 1010, respectively). It is 
seen that these curves are identical. Moreover, the curve for 
Re = 5 and 50 in Fig. 11 (XRe = 5 x 10s and 5 x 106, 
respectively) also coincides with these curves. 

An inspection upon Eq. (14£>) explains this trend. When the 
term 1/XRe in this equation is small enough to neutralize the 
effect of the memory term Joexp {-t-f fh)V/b dt', then the 
parameter X alone becomes unimportant. This is true because 
this integral term is the only other term (besides 1/XRe) where 
X appears. 

When XRe — oo, the shear stress TW tends to zero. This 
limiting case may be interpreted physically in two different 
ways. The first is the extreme case of a viscoelastic Maxwell 
fluid with very low fluid viscosity (Re — oo), where no viscous 
damping for the fluid kinetic energy is available. This behavior 
was also observed for the Newtonian fluid (Souza Mendes, 
1989), as expected. The other is the extreme case of a visco
elastic Maxwell fluid with very low elastic modulus (G — 0, 
since X* = fi/G). 

The cases of Reynolds number values away from the two 
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extremes mentioned above are now discussed. For X = 0.001, 
0.01 and 1 (Figs. 7,8, and 9, respectively), the curve for Re 
= 5 shows that the film thickness at 8 = 0° decreases very 
slowly with time, due to the high fluid viscosity. No oscillations 
are observed, and the viscoelastic fluid flows toward an equi
librium configuration, as does the Newtonian fluid. For Re = 
50, the same trend is observed for X = 0.001 and 0.01, except 
that the motion is somewhat faster due to the lower fluid 
viscosity. For X = 1 (and Re = 50), tiny oscillations at early 
times are observed, which die away at t — 1.5. These results 
for small to moderate Re values do not differ too much from 
the ones for X = 0 (Newtonian fluid, Fig. 5 of Souza Mendes, 
1989), showing that in this Re range the elastic effects are not 
very important for X up to 1. 

For Re = 5 X 105, however, departure from Newtonian 
behavior is clear, even for X = 0.001. The higher the Deborah 
number, the lower the viscous damping observed, since the 
fluid elasticity (or memory) becomes more important than its 
viscous effects. For X = 1 and higher (Figs. 9, 10, and 11), 
there is no more evidence of viscous effects for Re = 5 x 10s. 

For higher values of the Deborah number (Figs. 10 and 11), 
elastic effects dominate even for Re values as low as 5. No 
viscous effects are observed. For X = 100 and Re = 5 (Fig. 
10), a small-amplitude oscillatory motion with no damping 
occurs. As Re is increased, the amplitude increases and tends 
to its largest value (corresponding to TW = 0). The amplitude 
increases with Re since, for a fixed value of X, the lower the 
fluid viscosity, the lower is its elastic modulus G. For X = 105 

(Fig. 11), G is small enough to yield negligible wall shear stress 
even for Re as low as 5. 

The effect of fluid elasticity on the present flow is further 
emphasized with the aid of Figs. 12 and 13. In Fig. 12, which 
pertains to a high fluid viscosity (Re = 50), it can be seen that 
the elasticity effect is dramatic. For X = 0 (Newtonian fluid), 
0.001, 0.01, and 1, the viscous effect dominates, and therefore 
there is a weak dependence on the Deborah number. As X 
increases, however, the picture changes completely, with os
cillations for X = 100 and a maximum-amplitude oscillation 
for X = 105. For a lower fluid viscosity (Re = 5 x 105, Fig. 
13), elastic effects already dominant for X as low as 0.001, 
and, for X = 1 and higher, viscosity damping effects are already 
completely negligible. 
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The tangential velocity V{8, t) reaches high positive values 
at early instants of time and then starts to oscillate with smaller 
magnitudes, changing sign periodically. Moreover, the velocity 
of maximum magnitude occurs at different 8 locations for 
different times, and with different magnitudes. 

Independently of the value of the Deborah number, for 
infinite fluid viscosity (Re = 0), the fluid does not flow. At 
the other extreme, when XRe — oo, the wall shear stress be
comes negligible and there is also no dependence on the Deb
orah number, and an undamped, large-amplitude oscillation 
is observed. 

Inasmuch as as the Maxwell model has been chosen to de
scribe the fluid behavior, some limitations were imposed to 
the analysis (Bird et al., 1987). No shear thinning effects are 
predicted with this model. Another nonlinear effect which 
cannot be predicted via the Maxwell model and which may be 
of importance in the present case is related to normal stress 
differences. 

As discussed in Souza Mendes (1989), from what is exper
imentally observed in other geometries, instability phenomena 
might be expected for Re values larger than = 800. There are 
also other simplifying assumptions in the present analysis which 
may influence the results obtained. Therefore, before this ap
proach is employed with confidence to predict real engineering 
situations, some comparisons with experimental results are 
needed for validation. 

Conclusions 

The purpose of the present paper is to report some progresses 
of the research presented in Souza Mendes (1989). Here the 
study was aimed at analyzing, the least qualitatively, the effects 
of a non-Newtonian fluid behavior on the flow of a thin film 
around a horizontal cylinder (wire). 

Comparisons of the present results with results obtained for 
a Newtonian fluid showed that the viscoelastic behavior of the 
fluid plays an important role on the flow. The fluid acquires 
an oscillatory motion for much lower values of the Reynolds 
number, which makes the free surface to become wavy in the 
8 direction. 
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Separation and Surface Nuclei 
Effects in a Cavitation 
Susceptibility Meter 
This work is concerned with the effects of flow separation and surface nuclei on 
the operation of a fixed geometry Cavitation Susceptibility Meter (CSM) with 
laminar flow. Cavitation is induced under controlled conditions at the throat of a 
glass venturi tube for the measurement of the active nuclei concentration in water 
samples as a function of the applied tension. Both cavitation and flow velocity are 
monitored optically by a Laser Doppler Velocimeter. The throat pressure is deter
mined indirectly from the upstream pressure and the local flow velocity. The results 
show that laminar flow separation and surface nuclei effects are the most stringent 
operational limitations. Separation in the diffuser increases the minimum attainable 
throat pressure above the susceptibility of most cavitation nuclei commonly found 
in technical waters. Surface nuclei can generate extensive sheet or spot cavitation 
at relatively high tensions even on optically finished glass surf aces. These phenomena 
are difficult to eliminate and bring therefore into question the practical utility of 
CSM's with laminar flow and fixed geometry for the measurement of the dependence 
of the cavitating nuclei concentration over wide ranges of the applied tension, as 
required for cavitation studies. 

1 Introduction 
The inception and extent of cavitation is determined by the 

concentration and susceptibility of nuclei, which locally trigger 
the onset of liquid rupture (Knapp et al., 1970). Knowledge 
of these properties of cavitation nuclei is essential for cavitation 
predictions and scaling. Among available methods for cavi
tation nuclei detection (Godefroy et al., 1981; Billet, 1985; 
Billet, 1986a), Cavitation Susceptibility Meters (CSM's) have 
long been proposed as standards cavitators in a variety of 
configurations (Shen et al., 1984; Gindroz et al., 1988) because 
of their unique feature of directly monitoring cavitating nuclei. 
Recently they also received significant attention in the attempt 
to extend their application to the measurement of the distri
bution of the active nuclei concentration on a wider range of 
applied tensions. In CSM's with fixed geometry cavitation is 
typically induced at the throat of a venturi tube, where cavi
tation nuclei contained in the liquid are, in principle, individ
ually excited and can be detected either optically (Oldenziel, 
1982a; Oldenziel, 1982b; d'Agostino and Acosta, 1991a; 
d'Agostino and Acosta 1991b) or acoustically (Lecoffre and 
Bonnin, 1979; Le Goff and Lecoffre, 1983; Shen et al., 1984). 
The throat pressure cannot be measured directly because of 
the extreme instability of the flow. It is therefore deduced from 
the upstream conditions and the energy equation using the 
measured local flow velocity or (less accurately) its estimate 
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based on continuity, with or without corrections for viscous 
effects according to the specific situation. The dependence of 
the active nuclei concentration on the applied tension at the 
venturi throat is obtained by repeated measurements at dif
ferent exhaust pressures. 

Among the various phenomena interfering with proper op
eration of CSM's, flow separation and surface nuclei effects 
seem to impose the most serious limitations (Oldenziel, 1982a; 
d'Agostino and Acosta, 1991a; d'Agostino and Acosta, 1991b). 

The present work is part of a systematic study on CSM's 
recently carried out at the California Institute of Technology 
and specifically focuses on the impact that these phenomena 
may have on the operation of CSM's with laminar flow and 
fixed geometry. 

2 Experimental Apparatus and Procedure 
The CSM used in this experiment has been described pre

viously in detail (d'Agostino 1987; d'Agostino and Acosta, 
1991a; d'Agostino and Acosta, 1991b), therefore only its most 
significant features are summarized here as required for clarity 
(see Fig. 1). By properly adjusting the exhaust pressure, cav
itation nuclei are, in the average, individually excited at the 
throat section of a blown glass venturi tube, where they are 
monitored by a back-scattering Laser Doppler Velocimeter 
(LDV). In all operational conditions the noncavitating flow 
has a laminar potential core throughout the throat and the 
initial part of the diffuser. The amplitude and frequency of 
the filtered LDV signal are respectively used by the CSM Signal 
Processor to detect and measure the speed of up to 1024 cav-
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Fig. 1 Schematic of the various components of the CSM experimental
apparatus: water inlet (WI), sampling valve (SV), upstream pressure trans
ducer (UPT), venturi tube (VT), exhaust valve (EV), exhaust tank (ET),
regulated air pressure line (RA), return valve (RT), water return (WR), laser
Doppler velocimeter (LDV). Acosta, 1991b). The others involve unwanted phenomena,

which, as mentioned earlier, will be examined here because of
the limitations they impose on the operation of CSM's.

3 Cavitation-Separation
Cavitation-separation has also been reported by previous

investigators (Oldenziel, 1982a; Shen et a!., 1986; Ito and Dba,
1980) and appears as an attached cavity in the upstream part
of the diffuser (see Fig. 2). Most likely it is related to the well
documented interaction of laminar separation with incoming
free stream nuclei that get trapped in the low pressure recir
culation region, where they may later develop into an attached
cavity (Arakeri and Acosta, 1973). The cavitation-separation
bubble is initially intermittent and tends to stabilize at lower
pressures. When this cavity reaches the exhaust, as in the first
venturi, the useful portion of the diffuser is drastically short
ened and the throat pressure increases to a value only slightly
lower than the exhaust pressure. In this case the cavitation
separation bubble is permanent, except for the exhaust pres
sures nearly equalling the water vapor pressure. Hence the
presence of noncondensable gas seems to stabilize the cavi
tation-separation bubble by inhibiting its complete collapse.
In the second venturi the cavitation-separation bubble reat
taches in the longer exit section. The cavity is unsteady and
has been observed only occasionally, mostly after the tube had
been left dry and unused for some time. In general, cavitation
separation represents a serious problem because it causes an
uncontrollable disruption of the venturi pressure field, inev
itably compromising the operation of the CSM.

Laminar separation severely limits the allowable pressure
recovery in the diffuser and consequently the minimum achiev
able throat pressure. This point is effectively illustrated by the
application of Stratford's laminar separation criterion (Strat
ford, 1954):

Fig. 2 Cavitation·separation of a tap water sample in the CSM venturi
tube No.2. The lIow is from left to right, P. '" 1 atm., P. '" 5 kPa '" 2
percent and u, '" 13.5 m/s '" 0.2 percent. The cavitation·separation
bubble originates in the diffuser and terminates in the exit section with·
out reaching the exhaust.

RA

WR------------------tJ<J-----j
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WI -------*-----1...--+-4-*--

itation events, while the upstream pressure is simultaneously
read by an absolute pressure transducer. A microcomputer is
used for permanent data recording and reduction. The incep
tion pressure at the throat is calculated from the upstream
pressure and the throat velocity using Bernoulli's equation for
ideal, incompressible, steady, fully wetted flow. The active
nuclei concentration is determined by dividing the observed
cavitation rate by the volume flux, and its dependence on the
throat tension is obtained by repeating the measurements at
different exhaust pressures.

Two venturi tubes of similar internal geometry (Dt = I mm,
L t = 7 mm, L d = 10 mm, De = 1.2 mm ca.) but different
length of their exit sections (only a few mm and about 3 cm)
have been used in order to obtain different susceptibility to
cavitation-separation. Both venturi tubes were made of blown
glass, the most practical material with the necessary transpar
ency for LDV operation, surface quality and regularity for
flow stability, and mechanical resistance to cavitation damage.
In the absence of a well defined inception criterion, the choice
of the adjustable electro-optical sensitivity of the CSM is es
sentially arbitrary and therefore has been made by optimizing
the CSM response with constant settings in all operational
conditions. Velocity readings in the boundary layers and spu
rious noise-generated readings were eliminated by statistical
filtering in the data reduction (d'Agostino and Acosta, 1991 b).
The inherent dispersion of the measured quantities, typically
400 Pa for the average throat pressure and 0.03 mls for the
average throat velocity, was always much larger than the meas
urement errors.

Three different forms of cavitation have been observed while
testing tap water samples: travelling bubble cavitation, cavi
tation-separation and surface nuclei cavitation. Only the first
one is the nominal operational regime of the CSM, where
meaningful water quality measurements are possible (d'Agos
tino et a!., 1989; d'Agostino and Green, 1989; d'Agostino and

Nomenclature ---------------------------------

A
Cp

D
L

P
t
T

venturi cross-sectional area
pressure coefficient
venturi diameter
venturi section length
pressure
time
temperature

u = velocity
x = venturi axial coordinate

Subscripts

d venturi tube diffuser
e venturi tube exhaust
o water sample

t = venturi tube throat
u = upstream

Acronyms

CSM Cavitation Susceptibility
Meter

LDV Laser Doppler Velocimeter
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Here Cp = (p - p,)/(Pu - PI) and XB is the distance for the
momentum thickness () of a Blasius boundary layer (with zero
pressure gradient) to reach the actual value of () at the diffuser
inlet, x = O. Because of the steep inlet contraction in the
venturi, () essentially depends only on the throat length L, and
therefore XB "" L,. The above equation can be solved for the
maximum pressure recovery Pe - P, as a function of the dif
fuser length L d = x, thus defining the ideal nonseparating
operational envelope of venturi-type CSM's with laminar flow.
For any practical value of Ld/XB "" L d/ L, the maximum laminar
pressure recovery of the diffuser is comparable to the overall
pressure drop across the venturi, and therefore relatively small.
The available experimental data are in good agreement with
the predictions of Stratford's laminar separation criterion.

Clearly, superior separation performance can be attained
with developed turbulent flow in the diffuser, as documented
by other investigators (Shen et al., 1984). However, this would
prevent the accurate measurement of the throat pressure from
the local velocity by introducing uncertain corrections for the
viscous losses in addition to significant turbulent pressure fluc
tuations. In the present case the flow remains laminar (or very
nearly so) throughout the upstream part of the diffuser because
spontaneous transition would require tens of diameters and
the use of transition promoting devices is clearly ruled out by
the extreme instability of the flow.

These considerations also apply, at least qualitatively, to
other types of CSM's with laminar pressure recovery. The
maximum tensions compatible with laminar separation are
generally lower than the critical tensions of free stream nuclei
in technical waters at nearly atmospheric pressure, which are
typically on the order of a few bars. It appears therefore that
separation imposes very severe and elusive limitations on the
performance of CSM's with laminar flow and fixed diffuser
geometry.

Fig. 3 Sheet cavitation of a tap water sample in the CSM venturi tube
No.2. The flow is from left to right, Po = 1 atm, To = 21 ± 1°C, ao =
20.5 ± 1 ppm, P, = -15.02 ± 0.390 kPa and u, = 14.84 ± 0.026 mls.
Sheet cavitation occurs in smalt fuzzy streaks at the diffuser inlel.
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4 Surface Nuclei Cavitation
Three forms of surface nuclei cavitation have been observed:

sheet, spot and resonant cavitation. Sheet cavitation consists
of relatively short and extremely thin attached cavities located
at the throat and the upstream part of the diffuser (see Fig.
3). Since the optically smooth internal surface of the venturi
does not provide any preferential inception points, sheet cav
itation wanders rapidly and often intermittently all around the
tube. Because of its small blockage effect, sheet cavitation
does not heavily interfere with the operation of the CSM, but
can introduce spurious cavitation counts due to bubbles orig
inating from the disintegration of the trailing portion of the
sheet cavities. These bubbles are released deep in the boundary
layers and therefore generate abnormally low Doppler fre
quency readings, which often occur sequentially in small groups
(see Fig. 4) and can easily be eliminated by statistical filtering
in the data reduction.

Spot cavitation consists in the stable periodic release of cav
ities from localized points on the venturi throat surface. It has
only been observed in the first venturi tube. Under stroboscopic
light of commensurable frequency spot cavitation appears as
a regular sequence of droplike shaped cavities, with their cusp
facing upstream and tilted towards the venturi wall. The LDV
measured cavity speed is lower than the fully wetted flow speed
and decreases markedly in the upstream direction. These cav
ities appear to periodically originate from a microscopic sur
face nucleus and later be released in the flow as they grow
large enough to be swept away by the incoming stream. The
shearing action of the boundary layer on the cavities explains
their peculiar shape and orientation. Spot cavitation disap
peared after cleaning the venturi internal surface, unfortu
nately before photographic records could be taken. However,
in no case it has been possible to detect any visible imperfection

Journal of Fluids Engineering

DATA INDEX I

Fig. 4 Doppler frequency data fo as a function of the data index I for
a typical CSM run in the venturi tube No.2. The data refer to the tap
water sample of Fig. 3.

on the optically smooth internal surface of the venturi that
could be safely identified as the nucleation agent.

Spot cavitation can also excite the venturi flow in stable self
sustained fluid dynamic oscillations at characteristic frequen
cies (resonant cavitation). The onset of these oscillations is
likely due to the coupling between the periodic release of the
cavities from the surface nucleus and the resulting perturba
tions of the venturi flow. Typical density distributions of the
time intervals between cavitation events in resonant cavitation
are shown for in Fig. 5, where the continuous line indicates
the expected Poissonian distributions for uncorrelated cavi
tation events (d'Agostino and Acosta, 1991a). Note the striking
deviation induced by resonant cavitation from the typical dis
tribution in normal CSM operation, which closely follows the
theoretical predictions (d'Agostino and Acosta, 1991b). The
average separation between the cavities in Fig. 5 (1.2 cm) is
about four times smaller than in normal operation at the high
est cavitation rates, thus indicating that the effect of resonant
cavitation can be quite substantial.
, Spot, resonant and sheet cavitation do not produce imme

diately obvious indications of irregular operation and therefore
are easily misinterpreted as free stream nuclei cavitation. As
a consequence, optical cavitation monitoring, possibly with
velocity measurement of individual cavities, is crucial for dis
criminating surface nuclei cavitation for CSM data validation.
Furthermore, the occurrence of substantial cavitation even on
optically smooth glass surfaces subject to relatively moderate
tensions indicates that interfacial nuclei may be a serious source
of errors in CSM's operating under less favorable conditions,
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Fig. 5 Observed distribution of time intervals f between successive 
cavitation events in resonant cavitation conditions in the venturi tube 
No. 1 (histograms). The solid line indicates the expected Poissonian 
distribution for uncorrelated cavitation events. 

commonly encountered in other applications. This may con
tribute to explain the large discrepancies consistently observed 
between the results of CSM's and alternative nuclei detection 
methods (Gowing et al., 1988; Godefroy et al., 1981). 

5 Conclusions 
The following conclusions can be drawn from the current 

experience on the CSM under investigation: 
• the throat pressure limitations imposed by laminar sep

aration are generally quite stringent and difficult to elim
inate in fixed geometry diffusers; 

9 the maximum tension currently attainable with laminar 
flow (about - 35 kPa for samples at atmospheric pressure) 
is often insufficient for cavitating the nuclei typically pres
ent in technical waters; 

• surface nuclei effects may seriously interfere with CSM 
operation even at relatively moderate tensions on optically 
smooth blown glass surfaces; 

• the discrimination of surface nuclei effects for CSM data 
validation requires direct optical observation and possibly 
velocity measurements of individual cavities; 

• spot cavitation can develop into resonant cavitation in 
venturi tubes with short diffusers; 

• the above difficulties may help explaining the observed 
discrepancies between the results of CSM's and alternative 
nuclei detection methods and, if not circumvented, bring 
into question the practical utility of CSM's with laminar 
flow and fixed geometry for the measurement of the active 
nuclei concentration distribution over realistic ranges of 
the applied tension, as required for cavitation studies. 
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Fig. 5 Observed distribution of time intervals f between successive 
cavitation events in resonant cavitation conditions in the venturi tube 
No. 1 (histograms). The solid line indicates the expected Poissonian 
distribution for uncorrelated cavitation events. 

commonly encountered in other applications. This may con
tribute to explain the large discrepancies consistently observed 
between the results of CSM's and alternative nuclei detection 
methods (Gowing et al., 1988; Godefroy et al., 1981). 

5 Conclusions 
The following conclusions can be drawn from the current 

experience on the CSM under investigation: 
• the throat pressure limitations imposed by laminar sep

aration are generally quite stringent and difficult to elim
inate in fixed geometry diffusers; 

9 the maximum tension currently attainable with laminar 
flow (about - 35 kPa for samples at atmospheric pressure) 
is often insufficient for cavitating the nuclei typically pres
ent in technical waters; 

• surface nuclei effects may seriously interfere with CSM 
operation even at relatively moderate tensions on optically 
smooth blown glass surfaces; 

• the discrimination of surface nuclei effects for CSM data 
validation requires direct optical observation and possibly 
velocity measurements of individual cavities; 

• spot cavitation can develop into resonant cavitation in 
venturi tubes with short diffusers; 

• the above difficulties may help explaining the observed 
discrepancies between the results of CSM's and alternative 
nuclei detection methods and, if not circumvented, bring 
into question the practical utility of CSM's with laminar 
flow and fixed geometry for the measurement of the active 
nuclei concentration distribution over realistic ranges of 
the applied tension, as required for cavitation studies. 
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problem in cavitation nuclei measurements and it is important 
to have a better understanding of their behavior. 

When we used classical venturi design, despite the extreme 
caution in making the devices, we always had problems with 
the surface finish. We made more than 50 plexiglas venturi 
before making one of them work the right way. Then, we 
turned to high precision spark machining of stainless-steel ven
turi. Finally, the best solution was to make venturi by nickel 
electrodeposition. In all cases, extreme care had to be taken 
and a final hand polishing was often necessary to make the 
system work correctly. Among the acceptance tests, the venturi 
had to reach at least-2 bars when operated with tap water. 

Finally, we turned to less classical designs and plexiglass 
venturi where a stainless-steel central body has been developed. 
They gave us less problems with unwanted cavitation types, 
like sheet or wall nuclei and made flow visualization quite easy. 

Whatever the venturi type, we had Reynolds numbers in the 
same range as the authors had. The classical venturi had a 
throat diameter of 2 mm and the annular gap in the central 
body venturi was typically of 1 mm. 

Despite these relatively low Reynolds numbers, it has always 
been possible to reach low tensions. The lower tension obtained 
has been - 8 bars with the Grenoble tap water. In sea water, 
we have measured tensions of - 5 bars in the Tahiti Lagoon. 
These two results have been obtained with water roughly sat
urated with air at atmospheric pressure. 

When we use venturi in cavitation tunnels, for example GTH, 
the water susceptibility is generally below - 1 bar when no 
nuclei are added. In this case, as well as in the case of natural 
waters, the venturi is the only method available to measure 
efficient nuclei. 

When artificial nuclei are added in cavitation facilities, other 
methods can be used to measure nuclei, among whose the 
scattering, holography, phase method or a very recently de
veloped hybrid method which uses simultaneously scattering, 
phase method and image processing with non-coherent light. 
In routine tests, the best fitted method may depend on the 
information required. For example, when it is necessary to 
know the diameter distribution of big bubbles, typically bigger 
than 50 /t, optical methods are much more precise than venturi. 

We found good correlations between venturi and phase laser 
measurements in GTH. Venturi is considered as the reference, 
even though some problems still have to be solved, as for 
example complete automation of the system. Excellent cor
relations between bubble cavitation and venturi measurements 
have been found in Laurence Briancon Marjollet Thesis (1987). 

In conclusion, it seems to me very important to remember 
that the development of venturi systems (Oldenziel, Lecoffre), 
has shown that the nuclei populations measured by optical 
methods, i.e., scattering or microscopy, were mainly contain
ing nonefficient nuclei. This is the major reasons for the dis
crepancies found in the literature. Finally, the use of venturi 
to measure cavitation nuclei spectral over a wide range of 
critical pressures has been demonstrated by Marjollet (1987). 
This technique is used in routine tests in several European 
laboratories. 
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First of all, I would like to thank Dr. Lecoffre for his kind 
words on our work. His comments deserve special consider
ation because of his long and well-known expertise in the field. 

The determination of the inception pressure is crucial for 

the measurement of the active nuclei concentration distribu
tion. Because of the extreme instability of the flow, the in
ception pressure can only be measured indirectly. This is 
invariably done using Bernoulli's equation for steady, incom
pressible, fully wetted flow, with or without corrections for 
viscous effects, depending on the specific situation. This 
method, however, only yields accurate results in flows where 
(as in our case) only sporadic cavitation occurs. It is clearly 
totally inadequate in the presence of extensive cavitation, when 
the flow is unsteady, nonhomogenous, nonbarotropic and 
heavily affected by the inertial effects due to the bubble re
sponse. In these conditions the application of Bernoulli's equa
tion to flows with rapidly growing cavities invariably leads to 
gross overestimation of the cavitation tension. 

Since the discharge pressure can never be negative, the in
ception tension is essentially limited by the pressure recovery 
in the diffuser. Turbulent flow, which is commonly encoun
tered in CSM's reported in the literature, is clearly advanta
geous in this respect, by promoting boundary layer stability 
to separation. The maximum tensions (up to - 800 kPa) re
ported by Dr. Lecoffre in CSM's of various configurations 
are much higher than those we have been able to obtain in 
fully wetted laminar flow, and clearly incompatible with lam
inar pressure recovery in the diffuser. At these tensions cav
itation would be extensive (if not massive) in most technical 
waters. If my previous discussion is correct, at least part of 
the observed discrepancies is simply due to the underestimation 
of the cavitation pressure, the rest being due to the favorable 
effect of turbulence. 

In view of our early negative experiences with plastic Venturis 
of conventional design, I am rather surprised that Dr. Lecoffre 
and his collaborators have been able to successfully operate 
both conventional and central body Venturis with plastic dif-
fusers without significant surface nuclei cavitation, despite the 
erosive effects of imploding cavitation. As discussed in our 
paper, even optically smooth blown-glass venturi did not com
pletely eliminate surface nuclei effects in our experiments at 
much lower tensions than reported by Dr. Lecoffre. 

As indicated by Dr. Lecoffre, in general not all potential 
nuclei measured by indirect methods actually develop cavita
tion. However, in my opinion the observed discrepancies be
tween the nuclei populations measured by CSM's and other 
indirect methods should only in part be attributed to this effect. 
Our comparisons of CSM and holographic results in water 
samples with a dominant population of air bubbles still showed 
that the CSM largely underestimated the active nuclei content 
(d'Agostino et al., 1989; d'Agostino and Green, 1989). This 
may be due to sensitivity limitations and, at higher cavitation 
rates, to interference effects among cavities. More importantly, 
the very same notion of cavitation inception is not clearly 
defined for nuclei exposed to unsteady pressure histories. I 
believe that any realistic comparison between results obtained 
by CSM's and other indirect methods should account for the 
dynamic nature of cavitation in the specific application. 

As a final remark, it is important to note that surface nuclei, 
separation, bubble interference, turbulence, and other dis
turbing effects have quite a different impact on the operation 
of CSM's depending on their intended use. As long as CSM's 
are simply used as sophisticated standard cavitators, these ef
fects are often irrelevant, if only relative information is re
quired. In this case CSM's can be quite useful for direct water 
quality assessment. However, when CSM's are used to measure 
the distribution of the active nuclei concentration in the liquid 
over an extended range of tensions for comparison with other 
nuclei detection methods that yield similar spectral informa
tion, it is essential to precisely determine the source and in
ception conditions of cavitation, and disturbing effects can 
become quite important. In my opinion the effectiveness of 
CSM's in this latter role is still far from being conclusively 
demonstrated and deserves further investigation. 
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A Statistical Analysis of Cavitation 
Erosion Pits 
An optical interferometric technique has been used to determine the 3-D shape of 
cavitation erosion pits. The method which is particularly suitable to the determination 
of pit diameter and pit depth is used for a statistical analysis of cavitation erosion 
pits. We analyzed numerous samples which were eroded at various velocities with 
two different fluids (mercury and water) on two geometrically similar venturi test 
sections of different length scales. General properties of histograms of pit size are 
pointed out. The influence of flow velocity on pitting rates corresponding to limited 
ranges of pit size is discussed. The contribution of each pit diameter to the total 
eroded surface is analyzed. Some results are given on pit depths and pit volumes. 

1 Introduction 
In cavitation erosion studies, several techniques may be used 

to quantify the damage on a material as pit counting (Stine-
bring, 1976), measurement of mean depth of deformation 
(Kato, 1975), or weight loss. Concerning the pit counting tech
nique to which the present paper is devoted, the more studied 
parameter is pitting rate, i.e., the density of pits per unit surface 
area and per unit time of exposure, notwithstanding any pit 
size parameter. In the present analysis, we try to improve this 
technique in taking into account pit diameter and if possible 
pit depth. Then, damage is basically characterized by a his
togram in size of pit density. 

Such an approach describes more precisely the damage on 
a material as the contribution of small pits or large ones is 
obviously not equivalent. Even if only total pit density is of 
interest, discussion of results may be significantly complicated 
by the cut-off size which is characteristic of the counting tech
nique used.1 Pitting rate is actually strongly dependent upon 
this threshold size. In addition, pit size appears as an essential 
parameter in many studies. It is the case in cavitation erosion 
scaling which is the main motivation of the present research. 
In particular, for geometrically similar cavitating flows, an 
important point is to know how pit size is correlated to the 
general length scale and how the cut-off size has to be scaled 
to make relevant comparisons of total pitting rates. Taking 
into account pit size leads necessarily to a more complicated 
treatment. For the present research, a specific technique based 
upon an interference method has been developed. Its principle 
is described in section 2. It proved to be handy enough and 
quite suitable to the determination of histograms in size. 

The present study is part of a program on cavitation erosion 
scaling which is in progress in France. Previous experiments 
(Lecoffre et al., 1985) allowed us to ascertain some scaling 
assumptions but a few points remained uncleared and required 
the determination of histograms in size. A large number of 

'And possibly of the degree of polish of the surface. 
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samples were eroded in this study under various conditions of 
flow velocity, fluid and geometric scale as presented in section 
3. It is a storehouse of information that we tried to exploit. 
This paper is devoted to the presentation of the most reliable 
results we have obtained at the present time. A few points 
related to scaling rules are still under examination and require 
additional erosion tests. 

2 Pit Analysis Technique 
The pit analysis technique used in the present study was 

developed by G. Tribillon at the "Laboratoire d'Optique de 
Besancon" in France (Pierali and Tribillon, 1987;Pierali, 1989). 
It is based upon an interference method schematically pre
sented in Fig. 1. A typical interferogram is given in Fig. 2. 

The system is made of a metallographic microscope used 
with interferential objectives of Mirau type. The light source 
is a 100W mercury lamp equipped with a green filter centered 
on wavelength X = 0.546/xm. The light is divided into two 

^m\. 

0 A/8 A/4 3A/8 

I Fig. 1 Principle of the interference method 
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Fig. 2 Typical lnterferogram (photograph)

04= 3
4
A-2h 14=10 (1-'Y sin 4~h),

and from these formula, it can easily be shown that:

h 1 lz-I4- = - Arctg -- (2)
A/2 21l" I t -I3

This expression proves that, at any point (X,Y) , the local
depth h can be deduced from the four interferograms. Then
it is possible to reconstruct the whole surface h(x,Y) of the
sample under observation. In practice, the four interferograms
are obtained by the displacement of the interferential objective
by means of a piezoelectric transducer. The acquisition is made
by a CCD camera and images of size 512 x 512 are stored and
processed on a microcomputer. Three different magnifications
have been used: x 10, x 20 and x 40. With magnification x 40,
the size of the observed field is 0.142mm x 0.201mm.

beams: a reference beam reflected by the mirror of the inter
ferential objective and a second beam reflected by the deformed
surface of the eroded sample.

At each point (x,y) of the observed surface, the light intensity
I which results from the interference is given by:

I(x,y)=Io (1+'YCOS21l"°(~Y)) (1)

where 10 is the incident intensity, 'Y the fringe contrast, and a
the length difference between the two beams which depends
upon pit depth h at location (x,y). In order to determine aand
consequently h and to get rid of constants 10 and 'Y, the method
developed by Tribillon consists in considering four different
interferograms. They are obtained by successive translations
of Al8 of the reference mirror as shown on Fig. 1.

The four corresponding beam length differences and inten
sities are given by:

'This choice is not purely conventional, as explained in section 4.

From Eq. (1), it can be seen that the difference of altitude
between two consecutive black fringes is A/2. If grey levels are
digitized on 8 bits, depth accuracy is of the order of only AI
512. Thus, the method is very sensitive to small differences in
depth.

This high accuracy in depth is at the origin of a difficulty.
If the local slope of a pit is too large, the CCD camera may
not be able to distinguish two consecutive fringes. This leads
to a loss of determination of function Arctg in Eq. (2) and
then to the indefiniteness of pit depth. The limitation depends
on magnification which determines space resolution. For mag
nification X 40, the limit slope is approximately 34 deg whereas
it is only 10 deg for magnification x 10.

This problem can be limited by increasing computational
tests to try to follow the determination of function Arctg. In
a few cases, this difficulty is only partially overcome and com
puted surfaces present depth discontinuities. It is often the case
for pits obtained with mercury as their depth is generally an
order of magnitude greater than for water (see section 7).

As pits are generally circular, it is enough to restrict shape
computation to a unique section going through its center. This
procedure allows to reduce considerably computational times,
what is essential when the method is implemented on a mi
crocomputer. In the present work, pit diameter D is determined
from a unique cross-section chosen visually. It is defined at
10 percent of pit depth. 2 The total surface which is analyzed
is such that the number of pits lies between 150 and 200. Such
a number proved to be enough to make relevant statistics and
not too large to allow a rapid enough analysis. Several images
close together are successively treated. Their number vary be
tween 20 and 250 according to degree of erosion.

Fig. 3 Geometry of test sections

3 Characteristics of Eroded Samples
The samples which are analyzed in the present study were

eroded on geometrically similar flows (Lecoffre et a!., 1985).
The basic geometry is a venturi shown in Fig. 3 with a central
body. Cavitation appears in the form of a small cavity attached
to the throat. It sheds vapour structures which collapse down
stream and cause cavitation erosion. Samples are flush mounted
on the diverging part. The table below presents the main test
conditions.

(
41l"h)II =10 1+'Y cos T

(
. 41l"h)lz=Io 1+'Y sm T

01 = -2h

Nomenclature -----------------------------------

D
h
I

pit diameter
pit depth
light intensity

v
a

flow velocity
length difference between the
two beams

A light wavelength
a = cavitation parameter
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(a) 

10 ' 

• V = 20 m/s 

D V = 30 m/s 

• V = 40m/s 

° V = 50 m/s 

100 

(b) 
D(nm) 

series N° throat diameter (mm) liquid velocity (m/s) 
$40 
<S>40 

* 120 

mercury 
water 
water 

1.9 to 9.9 
20 to 57 
20 to 57 

Cavitation parameter (or) defined by the ratio of downstream 
to upstream pressure was kept constant, which ensures a similar 
development of cavitation. 

The tested material is stainless steel 316L. A few tests were 
carried out with aluminum for cavitation in water. In spite of 
a very short exposure to cavitation of the order of one minute, 
the surface was so much eroded that the present method, par
ticularly suitable to isolated pits, could not be applied. 

4 Histograms of Pit Diameter 
Typical histograms of pit diameter are shown in Fig. 4. The 

10"1 

H V = S0-m/s 

a V = 30m/s 

* V = 40 m/s 

o V = 50 m/s 

D(, im) 

( C ) 

Fig. 4 (a) Histogram of pit diameter—series No. 
(b) Histogram of pit diameter—series No. 
(c) Histogram of pit diameter—series No. 

ordinate is measured in pits/cm2/s/jum; the /*m dependency 
appears after dividing pitting rate in pits/cm2/s by pit size 
bandwidth. Another type of representation named cumulative 
histogram is also used (Fig. 5 for instance); in that case the 
ordinate is measured in pits/cmVs and represents the density 
of pits of diameter greater than a given size plotted in abscissa. 

Figure 4 shows, in all cases, that the smaller pits, the higher 
pitting rates. Contrary to Kato (1989), our histograms do not 
have a maximum for a given pit size. 

For each series, histograms at different velocities have sim
ilar shapes. They can easily be superposed if a constant mul
tiplying coefficient is applied to pitting rates. This is shown in 
Fig. 5 which presents reduced histograms. The coefficient de
pends only upon velocities and can be considered as inde
pendent of pit diameter. 

In Fig. 5(a) we also plotted the total pitting rate correspond
ing to the limit D = 0 for the mercury tests. Total pit densities 
were obtained previously with a different counting technique 
(Lecoffre et al., 1985). The coefficients which were used to 
get the superposition of histograms in the range of diameter 
10jwn-90^m appear still valid for total pitting rates though 
they were determined by a quite different method. The present 
method allows to measure pits down to 10/xm in diameter. The 
upper limit is given by the size of the image; it is of the order 
of a few hundreds of yum. 

It is possible to measure pits smaller than 10/im; but, the 
smaller pits, the greater number we may overlook. This tends 
to make pitting rates decrease artificially for small diameters. 
In setting the cut-off size at 10^m, we are sure to have, for 
all diameters, a good determination of pit density. 

To determine histograms in the whole range of diameter 
10/im-500^tm, it is necessary to use two different magnification 
rates. Magnification x40 allows to measure pits of diameter 
between 10/zm and 100//m whereas magnification x 10 is suit
able to pits between 40/^m and 500/iim. Figure 6 shows the good 
comparison between histograms measured with different mag
nification rates. It was absolutely necessary to check this point 
in the case of mercury. 

In contrast to the water case, the problem of slope limit 
often arises in mercury, preventing an exact determination of 
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pit depth. The calculated pit profile is regular and can be 
considered as exact in its outer part where the shape is weak, 
but becomes discontinuous and so unreliable in its inner part. 
The frontier between the two domains depends upon the slope 
limit which increases with magnification (see section 2). The 
estimated value of pit depth is generally wrong and paradox
ically tends to increase with magnification.3 This difficulty 
could alter the determination of pit size as pit diameter is 
defined at a given fraction (k) of pit depth.4 In fact, the correct 
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Fig. 5 (a) Cumulative reduced histograms—series No. 1 
(b) Cumulative reduced histograms—series No. 2 
(c) Cumulative reduced histograms—series No. 3 

magnification x40 

'Even with the greatest magnification X40 available, pit depth is underesti
mated in most cases for mercury. 

4Here k= 10 percent. 

10 1U0 D ( ( i m ) IUOU 

Fig. 6 Histograms measured with different magnifications—series No. 
1 _ v = 4.1 m/s 

junction between histograms in Fig. 6 proves that, even if pit 
depth remains undetermined in mercury, estimations of pit 
diameter can be considered as reliable. 

To obtain a good estimate of pit size, on the one hand, the 
value of k has to be low enough to be sure that pit diameter 
is calculated in the outer region where pit shape is correctly 
determined. On the other hand, it has to be large enough so 
that pit diameter is determined in a region of sufficiently high 
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Fig. 7 Influence of velocity on pitting rates for different cut-off diam
eters—series No. 1 
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Fig. 8 Reduced pitting rates for different cut-off diameter—influence 
of velocity—series No. 1 

slope where an error in depth generates a low enough error in 
diameter. In practice, the value k = 10 percent gives a good 
compromise. 

5 Influence of Flow Velocity 
In the present section, we examine the dependence of pitting 

increases as a high power V of the velocity which is of the 
order of 6 (see for instance Stinebring et al., 1980). This trend 
is valid in a limited range of velocity and the exponent («) 
should tend to 1 at high enough velocity. It is the phenomenon 
of "saturation" presented below and discussed in more details 
by Lecoffre et al. (1985). 

We do not want to discuss here in details the value of n. 
Our purpose is rather to know if the cut-off size has an influ
ence on the velocity dependence and if partial pitting rates 
corresponding to limited ranges of pit have different behaviors 
with velocity or not. 

Figure 7 presents the influence of velocity on pitting rates 
estimated for different cut-off sizes in the case of mercury 
erosion tests. It appears that the three curves have similar 
shapes and can be superposed by applying a constant multi
plying coefficient independent of velocity (see Fig. 8). The 
same conclusion also applies to the two other series in water 
at two different length scales.5 We now can conclude that a 
change in velocity affects equally all sizes. Density of small 
pits or large ones increases with velocity according to the same 
law. 

The phenomenon of saturation in mercury at high enough 
velocity which was discussed elsewhere (Lecoffre et al., 1985) 
and which was initially established for total pitting rate appears 
valid independently for any size. If we consider only pits of a 
given size, their density increases proportionally to the flow 
velocity above a threshold of about 5m/s and this behavior 
applies to any size. Note that saturation was not seen for the 
data in water up to 57 m/s which is in agreement with the 
similarity laws developed by Lecoffre et al. (1985). 

If we define ny(D) as the density of pits whose diameter is 
greater than D at velocity V, we can express mathematically 
the preceding results by the complete separation of variables 
D and V. In addition, if the influence on pitting rate of the 
velocity is known for a given reference size D0, the histogram 
nv(D) at any velocity Kcan easily be deduced from a reference 
histogram nVo(D) obtained for a given reference velocity V0 
from the following equation: 

nv(D) = ̂ -nVo(D) (3) 

This point introduces a significant simplification for the 
determination of a family of histograms ny(D) corresponding 
to different velocities. This result is applied in this paper for 
cumulative histograms but also applies to spectra. 

6 Eroded Surface 
Histograms in size show a very rapid increase of pitting rate 

when pit size decreases. However, we can expect that small 
impacts cause smaller damage than larger ones, at least if 
damage is measured from eroded surfaces as it is the case in 
the present section. Then, the question is to compare the con
tributions of all sizes to total erosion and in particular to know 
if small pits which are very numerous contribute significantly 
or not to cavitation erosion. 

Figure 9 presents, for the case of mercury, the eroded surface 
per class of diameter. All curves corresponding to different 
velocities show a maximum for a given pit size of the order 
of 30/wn. This characteristic size is independent of flow ve
locity, which comes out of the existence of reduced histograms. 
The existence of this maximum means, on the one hand, that 
large pits are not numerous enough to erode the surface sig
nificantly, whereas, on the other hand, small pits concern a 
negligible surface although their density is very high. 

In the case of water, similar results were obtained. For a 
throat diameter of 40mm (series 2), the characteristic diameter 

rate with flow velocity. It is generally assumed that pitting rate 'Corresponding diagrams are not presented here. 
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Fig. 9 Eroded surface per class of diameter—series No. 1 

for which the eroded surface is maximum is of the order of 
70/xm. For a throat diameter of 120mm, this characteristic size 
is increased, but less than the global length scale; it is of the 
order of 100/xm. 

The estimation of the total eroded surface obtained in taking 
into account all sizes allows to determine the fraction of surface 
eroded per unit time of exposure. It gives a global estimate of 
the probability of overlapping of impacts according to the time 
of exposure. For example, from erosion tests of series 2 in 
water, and in considering all pits in the range 30ftm-600^m, 
the ratio of the eroded surface to the exposed surface is 7.2 
percent at 20m/s and 650 percent at 57m/s, per hour of ex
posure. 

7 Pit Depth and Pit Volume 

Pits are generally not very deep. Their reduced depth h/D 
is, in the case of water, generally smaller than 1 percent. It 
means that a pit of 0.1mm in diameter is less than ljtm deep. 
We could not determine pit depth owing to the problem of 
slope which was previously discussed for the case of mercury. 
However, we can roughly estimate that pits due to cavitation 
in mercury are deeper than for water. A value of reduced depth 
of a few percents seems most likely. 

As a first approach, we calculated the mean values and rms 
values of reduced depth h/D for water. We did not notice any 
regular variation of reduced depth with pit diameter. On an 
average, large pits are not proportionally deeper than small 
ones; we can consider that mean shapes are similar. Yet, if we 
consider all pits of a given diameter, a great scattering in depth 
is observed. It shows that, even if pits can be statistically 
characterized by a mean shape independent of their size, there 
is a large variety of shapes around it. 

The only systematic variation which could be pointed out 
is relative to flow velocity. In considering all pits of size between 
30/j.m and 600/xm, we obtained the following results: 

V(m/s) 20 30 40 50 57 
h/D 
(%) 

series 2 
series 3 

0.26 
0.32 

0.35 
0.38 

0.33 
0.37 

0.42 
0.43 

0.51 
0.50 

Fig. 10 Histograms of relative pit depth for various classes in diame
ter—series No. 2— V = 57 m/s 

The general trend is an increase of relative pit depth with 
velocity. Between 20m/s and 57m/s, h/D is multiplied by a 
coefficient of about 1.5 or 2. 

As a second approach, we tried to introduce two-dimensional 
histograms, one dimension being pit size and the other di
mension being pit depth. A typical two-dimensional histogram 
is given in Fig. 10. For all sizes, histograms of relative pit depth 
show the same trend. There is a continuously increasing num
ber of pits which correspond to weaker and weaker defor
mations of the surface. This implies that there is no mean 
depth for pits of a given size. Mean values which were presented 
above are simply relative to a statistics on all pits which were 
taken into account i.e., which depth is greater than approxi
mately A/4 = 0.1/mi. 

The problem of the cut-off depth appears to be very similar 
to the one of the cut-off size discussed previously. Undoubt
edly, two-dimensional histograms give a better description of 
cavitation damage, but the introduction of a second dimension 
brings new difficulties. In the case of water for which pit depth 
could be measured, it was also possible to determine pit vol
umes. They were calculated by rotating the pit profile and 
calculating the generated volume. 

In the same way as we discussed the contribution of all sizes 
to the total eroded surface, we can easily estimate the contri
bution of all sizes to the ' 'eroded volume.'' By eroded volume, 
we mean the cumulative volume of pits. As pits are only per
manent deformations without material removal, such a data 
is not representative of mass loss. 

Figure 11 presents, in the cases of erosion tests of series 2 
in water, the distribution of eroded volumes with pit size. 
Results are quite similar to the ones obtained for eroded sur
faces. In particular, there is a characteristic size for which the 
eroded volume shows a maximum. Larger pits give a smaller 
contribution due to their small density whereas smaller ones, 
although they are very numerous, have also a contribution of 
minor importance. The characteristic size for which the eroded 
volume is maximum is slightly greater than the one for which 
the eroded surface is maximum. For series 2 and 3, it is, 
respectively, of about 100/mi and 200/zm. 
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Fig. 11 Eroded volume per class of diameter—series No. 2 

8 Uncertainty Estimates 
For histograms (Figs. 4, 5, 6, 9, 10, 11) the uncertainties on 

abscissae D or h/D can be considered as negligible. Same 
conclusion for the abscissae of Figs. 7 and 8 which correspond 
to the velocity in the testing facility and which is known with 
a very good accuracy. 

Uncertainty on pitting rates is estimated to ±25 percent for 
Z><200jxm. Large pits are less numerous and errors of statis
tical nature are greater; for Z>>200/xm, the uncertainty on 
pitting rate is estimated to ±40 percent. Such uncertainties 
may appear quite large but represent in fact only a small frac
tion of full scale as pitting rate extends over several decades. 

9 Conclusion 
This paper presents an analysis of histograms in size of 

erosion pits. An interferometric method originally developed 
by Pierali and Tribillon (1987) was adapted to cavitation ero
sion in order to measure pit size. It is particularly suitable for 
pits of diameter in the range 10^m-500^m. Conclusions of this 
paper were focused on general properties of histograms. They 
were established for three conditions of erosion with two dif
ferent fluids (mercury and water) on two similar test sections 
of different length scale. The following summarizes the im
portant conclusions: 

1. Histograms in size corresponding to different flow ve

locities can be reduced to a unique histogram by means of a 
multiplicative factor on pitting rates which is independent of 
diameter and depends only of flow velocity. Histograms have 
similar shapes whatever the flow velocity may be, i.e., pits are 
distributed among the different sizes in a similar way inde
pendent of flow velocity. 

2. The influence of velocity on pitting rate is the same what
ever the considered size may be. In particular, its influence is 
the same as for total pitting rate. In the case of erosion with 
mercury, it is shown that saturation, which was initially pointed 
out at high enough velocity for total pitting rate, applies in
dividually to partial densities of pits of any given size. 

3. Concerning eroded surface, all analyses have pointed out 
a characteristic size for which the contribution to the eroded 
surface is maximum. Smaller pits, although they are more 
numerous, have a minor contribution whereas larger ones have 
also a minor contribution but because of their small number. 
For stainless steel, this characteristic size is of the order of: 

30/xm for erosion in mercury on a venturi of 40mm in throat 
diameter 

70^m for erosion in water on the same venturi of 40mm in 
throat diameter 

lOOftm for erosion in water on the same venturi of 120mm 
in throat diameter. 

4. Reduced pit depth h/D tends to increase with flow ve
locity. No correlation of pit depth with diameter was observed. 
On an average, pits have similar shapes, although there is a 
large scattering in shapes. 

5. Eroded volumes as eroded surfaces present a maximum 
for a given pit size slightly greater than the one for eroded 
surfaces. 

Further work, requiring complementary tests, is in progress 
to interpret such histograms in terms of scaling laws for cav
itation erosion. 
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Local Anisotropy in Strained Turbulence at High 
Reynolds Numbers 

P. A. Durbin1 and C. G. Speziale2 

It is shown that the hypothesis of local isotropy is implausible 
in the presence of significant mean rates of strain. In fact, it 
appears that in uniform shear flow near equilibrium, local 
isotropy can never constitute a systematic approximation, even 
in the limit of infinite Reynolds number. An estimate of the 
level of mean strain rate for which local isotropy is formally 
a good approximation is provided. 

Introduction 
It is frequently asserted that even in flows with significant 

mean rates of strain, the gradients of turbulent velocity are 
statistically isotropic if the Reynolds number is large (Tennekes 
and Lumley, 1972). This hypothesis of local isotropy has been 
debated for some time, but it has remained an unproved spec
ulation. Experimental evidence gives grounds for suspicion: 
for instance, Townsend (1954), Uberoi (1957), and Marechal 
(1972) all found that when isotropic turbulence was subjected 
to homogeneous strain, the small scales became anisotropic; 
recent mixing layer experiments by Kuznetsov et al. (1990) 
provide evidence of local anisotropy at extremely high Reyn
olds numbers. Townsend concluded that the anisotropy was 
due to a direct effect of the mean strain on the small scale 
eddies. Anisotropy of passive scalar fluctuations in uniformly 
sheared turbulence was observed by Tavoularis and Corrsin 
(1981) and by Sreenivasan and Tavoularis (1980). In fact Sreen-
ivasan (1991) recently argued that existing experiments suggest 
that local isotropy is not a natural property of scalars in shear 
flows, except perhaps at enormously high Reynolds numbers 
that are of no practical relevance. Numerical simulations, albeit 
at very low Reynolds numbers, also show rather large depar
tures from local isotropy (Lee and Reynolds, 1985). 

A criticism of some of these experiments is that the Reynolds 
numbers were too low for the spectral peaks of energy and 
dissipation to be well separated, this separation being necessary 
for the energy cascade to scramble the turbulence. Although 
one might expect that the anisotropy of the large scales would 
be reflected in the small scales unless a significant spectral 
separation of scales existed, the existence of a spectral gap 
does not rule out a direct effect of mean strain on the small 
scales. Indeed, Townsend inferred such a direct effect in his 
experiments. The observations which led to his inference were 
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that when turbulence was strained the small scales became 
anisotropic, and that when the strain was released the small 
scales relaxed rapidly to isotropy even though the large scales 
remained anisotropic. Hence, sufficient nonlinear scrambling 
existed to prevent the large scale statistical structure from being 
imposed upon the small scales after removal of the strain. It 
might further be presumed that during the straining the large 
scales did not mediate the straining; it was felt directly at the 
small scales. 

The reasoning that a large spectral separation implies in
dependence of large and small scales was questioned on the
oretical grounds by Brasseur (1990). In that case it was the 
existence of nonlocal interactions in wave number space which 
led Brasseur to question the traditional rationale for local 
isotropy. Here we will not work in spectral space, so there is 
no immediate connection between the present analysis and that 
of Brasseur. 

It is sometimes argued that because the self-straining of small 
eddies is large compared to mean straining (their ratio is 0(y , / 
7jS) = 0(Re1/2) where r\ is the Kolmogoroff length scale, vn is 
the Kolmogoroff velocity scale, S is the magnitude of mean 
strain and Re is the integral scale Reynolds number) the small 
scales should be uninfluenced by mean strain rates (Tennekes 
and Lumley, 1972). This reasoning does not recognize that the 
observed anisotropy can be due to a relatively small, but co
herent bias superimposed upon the small-scale randomness. 

In the present case, the dissipation rate tensor (tij = 2vbkuibkUj 
with summation on repeated indices) is the small-scale statistic 
to be considered. An examination of the transport equation 
for tjj will show the direct effect of mean strain. This, not the 
experimental evidence, is the basis for the present suspicion 
that local isotropy is an implausible hypothesis. The dissipation 
rate tensor is of present interest because of its role in Reynolds 
stress dynamics and in second moment closure modelling. 

Analysis 
An evolution equation for e,y is obtained by differentiating 

the ./'-component of the fluctuating Navier-Stokes equations 
with respect to xk, multiplying by 2vdku„ averaging, and then 
adding the result to itself with /andy transposed. For simplicity, 
attention is restricted to the case of incompressible, homo
geneous turbulence, for which spatial derivatives of all tur
bulence statistics are zero. The transport equation for e,y can 
then be written as 

ey=- 2v(djUj + djUi)V2p - eikdkUj - ejkdkUi - 4p2d2
kmUid2

kmUj 

- eikdk Uj - eJkdk Ui - 2dkujdk U/ (1) 

where: w, denotes the fluctuating velocity and £/, its mean; 
t'ij = 2vdkUjdkUj is the fluctuating dissipation tensor, ey = e(j is 
its mean; and 

dUk, = 2pdiUkdjU,. (2) 

We have used the fact that dyki = djiki in homogeneous turbu
lence. If the Poisson equation V2p = - dkufiluk-2bkul(il

TJk is 
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used to eliminate the pressure from (l),then 

« U = Nu + 2(dm + dJkij)diUk - eikdk Uj 
-£jkdkUj-2dklijdkU, (3) 

where 

Ny = 2v(di Uj + dj u,)dkUid,uk - eikdkUj 

-ejkdkUj-4v dkmUibkmUj (4) 

contains the nonlinear and dissipative terms. Equation (3) is 
in a form which contains only .derivatives of velocities. 

Scale analysis shows (Tennekes and Lumley, 1972) that the 
individual terms in Ny are 0(Re1/2) larger than the other terms 
in (3). If (3) is to be an equality, then these 0(Re1/2) terms 
must sum to zero and the combination of terms in (4) must 
make Ny be comparable in magnitude to the other terms of 
(3). Only this combination of terms is relevant to the isotropy 
of ey. 

If the small scales are to be isotropic, then tensors composed 
by averaging products of gradients of the fluctuating velocity 
must have isotropic forms. Thus 

2 2 
eu = -eSu; Ny = -N5u; 

4 1 
dyki - JZ e5(A' ~ 77 efefy/ + V5") (5) 

in which e,-, = 2e is twice the rate of kinetic energy dissipation, 
Nn = 2N, and the identity dkky = ey has been used. On substi
tuting (5) into (3) one finds 

2 2 4 
3efi„ = -JV5„- -eS„ 

(6) 

where Sy= 1/2(9,(7/+9,(7,) is the mean rate of strain. Incom-
pressibility requires that S,-, = 0. The contraction of (6) is 

e =N. (7) 

Hence (6) can only be satisfied if Sy = 0; conversely, local 
isotropy is formally inconsistent with the Navier-Stokes equa
tions if S,y^0. 

Discussion 
In order to save the hypothesis that ey is isotropic, one might 

be tempted to relax the constraint (5) that requires Ny to be 
isotropic. To make ey isotropic it would have to be assumed 
that Ny has an anisotropic part exactly equal to 4/15 eSy: 

Nii-lN8y = ^eSi "y v (8) 

If the equation for Ny were written, it would be found that 
for Ny to have exactly this anisotropy, a further condition 
must be satisfied, and so on ad infinitum. This is far more 
stringent than the original hypothesis of local isotropy, and 
we see no reason why the Navier-Stokes equations should en
force such conditions; since Ny and ey are of the same order 
in Reynolds number, there is no asymptotic rationale for as
serting that Ny should absorb all the anisotropy produced by 
mean straining. Indeed, we believe that (8) is inconsistent with 
the reasoning behind the assumption of local isotropy—the 
heuristic argument for local isotropy is that at high Reynolds 
numbers the nonlinear energy cascade makes small scales of 
fluid motion statistically independent of large scale and mean 
motions. To have a small scale correlation like Ny depend 
directly and explicitly on Sy is fundamentally inconsistent with 
this reasoning. Thus, to maintain the original hypothesis one 
must introduce contradictory lines of heuristic reasoning. This 
seems a convincing reason for dismissing (8); hence, while Eq. 
(6) is not a rigorous disproof of local isotropy, it does make 
the hypothesis rather implausible. 

Under what conditions might local isotropy be a formally 

justifiable approximation? From Eq. (6), it is clear that local 
isotropy will not be a systematic approximation unless 

N»eS* (9) 

where S* = WSyW is a suitable norm. Estimation of the mag
nitude of N is a bit subtle, since it represents the net imbalance 
between vortex stretching and diffusion. The conventional es
timate is (Reynolds, 1987) 

N=0(e2/k) (10) 

where k is the turbulent kinetic energy. The decay of e is usually 
modeled by (10) after replacing the order of magnitude symbol 
by a constant of proportionality equal to about 2. It follows 
from (9) and (10) that 

S*k 
« 1 (11) 

is a necessary condition for local isotropy to constitute a for
mally justified approximation. 

Another way to try and save local isotropy as a lowest order 
approximation would be to insist that N be 0(e/r,) where T, 
is the Kolmogoroff time-scale. Then the mean rate of strain 
term in (6) would be 0(S*T„) = 0(Re~1/2) smaller than the 
nonlinear term. But this scaling conflicts with incontrovertable 
evidence: in decaying grid turbulence e <x {t/r)~n where T is 
the integral time-scale (which has been estimated as k/e in (11)) 
and « = 2. If N were 0(e/r ,) then n would have to be of order 
Re1/2, which it certainly is not. 

It will be shown that for certain basic shear flows, (11) is 
not satisfied and, hence that local isotropy is a questionable 
approximation—even in the limit of infinite Reynolds number. 
Homogeneous shear flow (where S* = 1/2 S, with S defined 
as the shear rate) is a basic turbulent flow that has been studied 
extensively by physical and numerical experiments (Tavoularis 
and Corrsin, 1981; Tavoularis and Karnik, 1989; Rogers et al., 
1986). Experiments, numerical simulations and closure models 
indicate that in this flow k and e grow exponentially in time, 
at the same rate. Therefore, at large times Sk/e achieves an 
equilibrium value which is independent of both the shear rate 
S and the initial conditions. Physical and numerical experi
ments reach an equilibrium value of 

Sk. 
e 

(12) 

which clearly is not consistent with (11). This seems to explain 
why the experiments of Tavoularis and Karnik (1989), which 
were at appreciable Reynolds numbers, yielded strongly an
isotropic values for the turbulent dissipation rate. Since k and 
e grow at the same exponential rate, so does the turbulence 
Reynolds number (R, = k2/ev). Hence (12) is the equilibrium 
value for homogeneous shear flow in the limit as R,— oo—a 
state of affairs that precludes local isotropy from being a 
formally justifiable approximation. Even higher dimensionless 
shear rates can exist in wall bounded shear flows; Lee et al. 
(1990) found that Sk/e can reach values larger than 16 near 
the walls of turbulent channel flow. 

The approximate value in (12) was obtained from experi
ments for which R, was not extremely high. However, in ho
mogeneous shear flow Sk/e can be written alternatively as 

Sk 
e 

1 S> 

2b 12 e 
(13) 

where (P = - uxu2Sis the turbulence production and 612 = UiU2/ 
2k is the shear component of the anisotropy tensor. The 
Schwartz inequality requires that l& 1 2 l<l /2 . Furthermore, 
(P/e> 1 for an equilibrium shear flow; hence, 

Sk 
- > 1 . (14) 

Thus it would appear that under no circumstance can local 
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isotropy represent a systematic approximation in homogeneous 
shear flow near equilibrium. 

While the analysis presented here was carried out strictly for 
the case of homogeneous turbulence, it should carry over in 
an approximate sense to weakly inhomogeneous flows. The 
turbulence in the log region of a boundary layer is an example. 
Physical experiments at high Reynolds numbers (Rodi, 1982), 
as well as direct numerical simulations done at lower Reynolds 
numbers (Mansour et al., 1988), indicate that Sk/e is in the 
range of 3 to 4 for 50<y + < 100 (were.y+ =yullh is the usual 
wall layer coordinate). This is not consistent with constraint 
(11); consequently, the commonly made assumption of local 
isotropy in the log layer of a high Reynolds number turbulent 
boundary layer appears to be questionable. The present con
siderations do not allow one to estimate the degree to which 
the small-scales are anisotropic, they only determine a con
dition when local isotropy is not a formally justified high 
Reynolds number approximation. However, some evidence 
exists that the dissipation tensor may be anisotropic in the log 
layer (Mansour et al., 1988). 

Care must be taken in elevating a convenient hypothesis to 
a universally accepted principle. It was shown here that local 
isotropy is not a formally justifiable hypothesis if the non-
dimensional mean rate of strain (S*k/e) is not small: this is 
due to the direct influence of mean rate of strain upon the 
evolution of ey. We have noted that this constraint on the rate 
of strain is not satisfied in many commonly encountered tur
bulent flows, for which local isotropy is often invoked in tur
bulence modeling studies. Future models should account for 
potentially significant anisotropics in the dissipation rate ten
sor. 
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Partial Acoustic Filtering Applied to the Equations of 
Compressible Flow 

J. R. Torczynski1 

Gas contained in a rectangular laser cell of large length and 
small width is subjected to large, transient, spatially nonuni
form, volumetric heating when pumped. The heating time scale 
is much longer than the time required for an acoustic wave to 
traverse the width but can be comparable to the time required 
for an acoustic wave to traverse the length. Approximate equa
tions describing the motion are derived by applying partial 
acoustic filtering to the equations of motion: pressure waves 
traversing the width are removed while pressure waves tra
versing the length are retained. For a simplified one-dimen
sional example, a significant density variation is found across 
the width of the laser cell; moreover, this density variation is 
in good agreement with a numerical solution of the unap-
proximated gas dynamic equations although the latter requires 
two orders of magnitude more computational time. 
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Introduction 
The motion of gas in a laser cell is considered. 'Whereas 

many common lasers operate at low or near-vacuum pressures, 
the initial gas conditions considered herein are near room tem
perature and near or above atmospheric pressure, with the 
correspondingly higher densities, as discussed by Torczynski 
et al. (1989). As a result, density variations within the laser 
cell induced by gas motion produce significant refractive index 
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isotropy represent a systematic approximation in homogeneous 
shear flow near equilibrium. 

While the analysis presented here was carried out strictly for 
the case of homogeneous turbulence, it should carry over in 
an approximate sense to weakly inhomogeneous flows. The 
turbulence in the log region of a boundary layer is an example. 
Physical experiments at high Reynolds numbers (Rodi, 1982), 
as well as direct numerical simulations done at lower Reynolds 
numbers (Mansour et al., 1988), indicate that Sk/e is in the 
range of 3 to 4 for 50<y + < 100 (were.y+ =yullh is the usual 
wall layer coordinate). This is not consistent with constraint 
(11); consequently, the commonly made assumption of local 
isotropy in the log layer of a high Reynolds number turbulent 
boundary layer appears to be questionable. The present con
siderations do not allow one to estimate the degree to which 
the small-scales are anisotropic, they only determine a con
dition when local isotropy is not a formally justified high 
Reynolds number approximation. However, some evidence 
exists that the dissipation tensor may be anisotropic in the log 
layer (Mansour et al., 1988). 

Care must be taken in elevating a convenient hypothesis to 
a universally accepted principle. It was shown here that local 
isotropy is not a formally justifiable hypothesis if the non-
dimensional mean rate of strain (S*k/e) is not small: this is 
due to the direct influence of mean rate of strain upon the 
evolution of ey. We have noted that this constraint on the rate 
of strain is not satisfied in many commonly encountered tur
bulent flows, for which local isotropy is often invoked in tur
bulence modeling studies. Future models should account for 
potentially significant anisotropics in the dissipation rate ten
sor. 
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Partial Acoustic Filtering Applied to the Equations of 
Compressible Flow 

J. R. Torczynski1 

Gas contained in a rectangular laser cell of large length and 
small width is subjected to large, transient, spatially nonuni
form, volumetric heating when pumped. The heating time scale 
is much longer than the time required for an acoustic wave to 
traverse the width but can be comparable to the time required 
for an acoustic wave to traverse the length. Approximate equa
tions describing the motion are derived by applying partial 
acoustic filtering to the equations of motion: pressure waves 
traversing the width are removed while pressure waves tra
versing the length are retained. For a simplified one-dimen
sional example, a significant density variation is found across 
the width of the laser cell; moreover, this density variation is 
in good agreement with a numerical solution of the unap-
proximated gas dynamic equations although the latter requires 
two orders of magnitude more computational time. 
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The motion of gas in a laser cell is considered. 'Whereas 

many common lasers operate at low or near-vacuum pressures, 
the initial gas conditions considered herein are near room tem
perature and near or above atmospheric pressure, with the 
correspondingly higher densities, as discussed by Torczynski 
et al. (1989). As a result, density variations within the laser 
cell induced by gas motion produce significant refractive index 
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variations and thereby significantly affect optical propagation 
through the gas, as noted by Neal et al. (1989). The laser cell 
is typically a rectangular enclosure, in which the gas motion 
is approximately two-dimensional. The cross-axis width of the 
laser cell (x direction) is usually much smaller than its length 
along the optical axis (z direction). The mechanism by which 
the laser is pumped heats the gas volumetricaliy. This heating 
can be large in the sense that the mean pressure rise thus 
produced can be comparable to or exceed the gas pressure 
prior to pumping. It is also spatially nonuniform, with 0(1) 
variations in both the x and z directions. Since the heating time 
scale is typically much longer than the time required for an 
acoustic wave to traverse the width of the enclosure, significant 
cross-axis gas motion occurs during the heating. The cross-
axis refractive index gradients established in this manner act 
like a lens with a focal length that varies in time, and this 
lensing can be strong enough to cause changes in the optical 
stability of the laser resonator, as reported by Torczynski and 
Neal (1988). Thus, a quantitative understanding of the induced 
gas motion is essential to predicting the laser's optical char
acteristics, as observed by Neal et al. (1990). 

If the heating does not vary in the z direction, no gas motion 
is induced in this direction, and the situation becomes one-
dimensional. This situation has been studied analytically by 
Torczynski (1989) using the acoustic filtering method discussed 
by Rehm and Baum (1978) and Paolucci (1982). Numerical 
solutions have also been reported for two-dimensional Carte
sian and axisymmetric geometries with heating that varied in 
both the x and z directions by Torczynski and Gross (1988) 
and Torczynski et al. (1989). These involved finite-difference 
representations of the mass, momentum, and energy equations 
for the compressible flow of a perfect gas, which were solved 
using an explicit scheme to advance time. For such a method, 
the maximum allowable time step is scaled by the ratio of the 
minimum spacing between grid points divided by the maximum 
"characteristic" speed, essentially the sum of the sound speed 
and the particle speed (see Book (1981) for discussions of time 
step limitations of explicit methods). Density variations are 
expected to be 0(1) in both the x and z directions, so roughly 
the same number of grid points are used in each direction. 
Since the width of the enclosure is usually much smaller than 
its length, the cross-axis grid spacing controls the time step 
selection. Thus, the time steps are very small relative to the 
heating time scale. 

This small time step arises from the fact that the numerical 
method discussed above resolves cross-axis pressure waves, as 
indicated in Torczynski and Gross (1988). However, as has 
been demonstrated analytically in the one-dimensional case by 
Torczynski (1989), the wave aspect of the cross-axis pressure 
variation is not important to the physics of the motion. As a 
result, it is not necessary to solve the equation for the cross-
axis pressure variation to determine the gas motion: it may be 
solved after the fact. If the two-dimensional situation is similar 
to the one-dimensional situation in this regard, then a large 
portion of the computational effort of the approach of Tor
czynski and Gross (1988) is spent resolving a phenomenon of 
minimal physical importance. Developing an approach which 
removes .the wave aspect of the cross-axis pressure variation 
is thus a desirable objective, both computationally and phys
ically. However, since the heating time scale can be of the same 
magnitude as the time required for an acoustic wave to traverse 
the length of the enclosure, significant waves can be produced 
that propagate in the z direction. In light of this consideration, 
it is not possible to use the two-dimensional version of the 
acoustically filtered equations developed by Rehm and Baum 
(1978) since all pressure waves have been eliminated from these 
equations. Rather, it is reasonable to develop a system of 
equations which reflects the fact that the pressure variation in 
the z direction behaves in a wavelike manner, whereas the 
pressure variation in the x direction does not. This partial 

acoustic filtering approach has the dual benefits of providing 
fundamental insight into the physics of such flows and of 
facilitating the development of more efficient computational 
methods by removing the stringent time step constraint caused 
by resolving cross-axis pressure waves. 

Two-Dimensional Cartesian Geometry 
Consider a perfect gas with zero shear viscosity, bulk vis

cosity, and thermal conductivity confined within a rectangular 
enclosure with side walls at x = 0 and x = Lx and end walls at 
z = 0 and z = Lz, where LX«LZ. The gas motion is governed 
by the solution of the mass, momentum, and energy conser
vation equations for a perfect gas, given by Torczynski (1989) 
in a convenient form: 

dp d d 

dt dx dz 

d d 2 d dp 
-r.pu + — pu +—puw + — = 0, 
at ox dz dx 

d d d 2 dp „ 
—pw +—puw +—pw + — = 0, 
dt dx dz dz 

(1) 

(2) 

(3) 

dp Idu dw\ dp dp 

Tt+^{Yx+Tz)+ud-x+wi=^-X)Q- (4) 

Here, p is the density, p is the pressure, u is the velocity in 
the x direction, w the velocity in the z direction, y the specific 
heat ratio, and Q the applied heating. The boundary conditions 
correspond to no flow through the boundaries: w(0, z, t) 
= u(Lx, z, 0 = 0 and w(x, 0, t) = w(x, Lz, 0 = 0 . The gas is 
initially at rest with density p0 and pressure p0. 

The heating has amplitude Q0 and varies smoothly over a 
time scale t0 in time and over length scales Lx and Lz in x 
and z, respectively. Significant density variations can be ob
tained in the x and z directions only if u is O(Lx/t0) and w is 
O(Lz/t0). Thus, the following dimensionless variables, denoted 
by tildes, are introduced: 

u=(Lx/t0)G, w=(Lz/t0)w, 

X l-i^X) Z — d-j^Z) 

t=t0t, Q = Q0Q, 

P=POP, P=PoP- (5) 

In the dimensionless variables, Eqs. (1) through (4) become 
the following: 

dp d d 
-Tz+-rzpu +—pw = 0, 
dt dx dz 

d d _ _2 d , , „ , dp „ 
—-pu +—pu +—puw + Mx — = 0, 
dt dx dz dx 

d d d _ ,2 , ,-->dp „ 
7-JW + - puw + — pw +MZ — = 0, 
dt dx dz dz 

dp (du dw\ dp dp 

Tr+yp(ax+Waax+*WAQ' 

(6) 

(7) 

(8) 

(9) 

where A= (y -l)Qot0/po is the heating amplitude scale, and 
Mx= (Lz/t0)/yjp0/p0 and Mz= (Lz/t0)/\Jp0/pQ are the Mach 
number scales, which are ratios of the transit times of acoustic 
waves traveling distances Lx and Lz to the heating time scale 
k-

Following Rehm and Baum (1978) and Paolucci (1982), the 
appearance of the large term Mx

2 in Eq. (7) indicates that the 
pressure takes the form 

p(x,z,t)=p(z,t)+p(x,z,t), (10) 

p(x, z, t)dx=0, (11) P( 
n 
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where p/p = 0(MX). Note that p depends on z in partial acous
tic filtering, whereas the analogous quantity in the acoustically 
filtered equations of Rehm and Baum (1978) has no spatial 
variation. Inserting this expansion into Eqs. (1) through (4), 
eliminating terms that are 0(Lx/L

2
z) or 0{M2

X), integrating 
Eq. (4) over x from 0 to Lx, and subtracting the resultant 
average of Eq. (4) from Eq. (4), yields the following complete 
system of equations: 

dp d d 
— +—PU + — pw = Q, 
at ax oz 

d d 2 d dp n 
-r,pu +—pu +—puw + — = 0, 
at ax oz ax 

a d d •, dp 
— pw + — puw +—pw + — = 0, 
at ox oz oz 

dp - dw .dp , -

Tt+ypTz + wTz = {y-l)Q' 
. (du dw\ „dp » 

yp\Yx+Tz)+wTz = {y-l)Q' 

(12) 

(13) 

(14) 

(15) 

(16) 

1 fL* 
f(z,t) = -=-\ f{x,z,t)dx, 

-xJo (17) 
f(x,z,t)=f(x,z,t)-f(z,t), 

where/6 [p, Q, w). In this notation, the bars denote averages 
in the x direction, and the hats denote deviations from the 
averages. Note that, by construction of Eq. (16) the integral 
of this equation from x = Q to x = Lx vanishes identically, so 
any velocity field u that satisfies Eq. (16) can simultaneously 
satisfy the required two boundary conditions, «(0, z, t) 
= u(Lx, z, t) =0 , even though Eq. (16) has only a first deriv
ative for u. Equation (15) can be recast in conservation form 
(equivalent to entropy conservation): 

d - . , , „ (y-DQpUy 

(.18) dt dz IP 

Several observations can be made about Eqs. (12) through 
(16). Note that the cross-axis pressure variation/5 is decoupled 
from the gas motion since it appears only in Eq. (13). This 
equation for p doesn't need to be solved until after the other 
equations are solved to determine w, w, and p. Thus, although 
there is an extra equation in the new system (Eq. (13) for 
p), it needs to be solved only for times at which knowledge 
of p is desired; moreover, it is solved simply by integrating 
with respect to x. In addition, Eq. (15) is a one-dimensional 
equation, and less computational work is required to solve it 
than would be required for a two-dimensional equation. Equa
tion (16) can be written in another form for illustrative pur
poses: 

3 « _ 7 - l 
dx~~ ' ~ IP 

- . dw d 

dz dz 
pw 

7 - 1 
(19) 

The three terms contained in the brackets on the right side of 
this equation represent the local deviation from the average 
rate of change of internal energy density due to entropy ad
dition, work, and transport, respectively. If more energy is 
added at a point than is added on average, then du/dx is 
positive, so energy transport by the velocity field u is induced 
away from the point. Correspondingly, if too little energy 
is added compared with the average energy addition, then 
du/dx is negative, so energy transport by the velocity field u 
is induced toward the point. Thus, the induced velocity field 
u acts to level out cross-axis variations in the rate of change 
of internal energy density. 

It is instructive to examine Eqs. (12) through (16) under 
several different limits. Suppose that no quantity varies with 
x. In this case, the situation becomes one-dimensional in the 

z direction, and Eqs. (12) through (16) reduce to the one-
dimensional fully compressible equations of motion with heat 
addition for a perfect gas. Thus, the unapproximated equations 
are recovered in this limit. As another limit, suppose instead 
that no quantity varies with z. In this case, the situation be
comes one-dimensional in the A: direction, and Eqs. (12) through 
(16) reduce to the one-dimensional acoustically filtered equa
tions discussed in Torczynski (1989). Thus, the acoustically 
filtered equations- are recovered in this limit. A more interest
ing limit arises from applying acoustic filtering ideas in the 
z direction. In the limit that M\« 1 (recall both Mx« 1 and 
LX/L2

X« 1), Eqs. (12) through (16) reduce to the two-dimen
sional acoustically filtered equations of Rehm and Baum (1978) 
in the limit that Ll/Ll«1. 

Explicit Solution Scheme 

A generic explicit solution scheme is outlined below for Eqs. 
(12) through (16). This scheme is not purported to be the 
optimal method of solution for these equations; rather, it is 
intended to illustrate the differences between solving Eqs. (12) 
through (16) and solving Eqs. (1) through (4) along the lines 
of the method in Torczynski and Gross (1988). The u, w, p, 
and p fields are presumed to be given at a specific time. Equa
tions (12), (14), and (15) are then advanced explicitly in time 
to determine the new p, pw, and p fields. The new w and Q 
fields are found from Eq. (17) and the specific model for Q, 
respectively. The new fields are then used in conjunction with 
Eq. (16) to determine the new u field. The u, w, p, and p fields 
are now known at the new time, and the procedure can be 
repeated. Whenever the p field is desired, Eq. (13) is solved. 

A formal stability analysis has not yet been completed for 
the solution method outlined above for Eqs. (12) through (16). 
However, it appears that the time step limitation discussed for 
the explicit solution of Eqs. (1) through (4) is replaced by a 
less stringent condition. Consider a finite-difference represen
tation employing grid points with separations Ax and Az in 
the x and z directions. Let um, wm, and am be the maxima of 
ltd, Ivel, and a (the sound speed), respectively, over the 
domain. The maximum allowable time step for the explicit 
solution of Eqs. (1) through (4) is scaled by the minimum of 
Az/(am+wm) and Ax/(am + um). Since Ax«Az by virtue of 
LX«LZ, the latter term generally limits the time step. It is 
conjectured that the maximum allowable time step for the 
explicit solution of Eqs. (12) through (16) will be scaled by the 
minimum of Az/ (am + wm) and Ax/um since the cross-axis pres
sure waves, which transport information at the sound speed, 
have been removed. If this idea is correct, then the time step 
will be larger than the time step for the method applied to Eqs. 
(1) through (4) by roughly a factor of Az/Ax or am/um, which
ever is smaller. Since each of these factors is typically 0(30-
100), a substantial improvement in computational efficiency 
may be achieved. 

As an example, consider a one-dimensional model of a nu
clear-reactor-pumped laser, as in Torczynski et al. (1989), in
volving argon, initially at 300 K and 100 kPa, between two 
infinite planes separated by 2 cm. The gas is heated by fission 
fragments from 1-jtm U 0 2 coating on the side walls. The heat
ing Q has the form Q = Qof(x/Lx)exp[- (t/t0)

2], whe re / i s 
largest near the side walls and has a minimum at the center-
plane, about which it is symmetric. (See Torczynski, 1989, for 
a detailed discussion of / . ) In this example, t0-0A2 ms and 
Q0 = 0.6 kW/cm3, which correspond to an energy deposition 
of 0.070 J/cm3. Figure 1 shows the density and velocity fields 
at the peak of the heating, and Fig. 2 shows the pressure history. 
The open symbols result from an explicit solution of the full 
gas dynamic equations of the sort discussed above, and the 
solid curves are the solution of the one-dimensional version 
of Eqs. (12) through (16). In both cases, 100 points are used 
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Fig. 1 Density and velocity versus position at (= 0 (peak heating): curves, 
partial acoustic filtering; symbols, full equations 
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Fig. 2 Pressure versus time: solid curve, partial acoustic filtering; open 
symbols, full equations at x = 0 (only one point is shown for every 25 
history points) 

to discretize the domain. A mean time step of 0.12 jus (the time 
stepping is adaptive) is employed in the former based on the 
limitation discussed above, but a fixed time step of 12 /xs is 
used in the latter, which represents a hundredfold reduction 
in computational effort. Since the sound speed in argon is 
323 m/s (prior to heating) and flow velocities on the order of 
2 m/s are observed, the ratio am/um is on the order of 100, 
which is comparable to the improvement seen. Note that the 
agreement between the two approaches is excellent, with no 
evidence of stability problems. 

Conclusions 
The motion of a perfect gas has been studied when the gas 

is subjected to large, transient, spatially nonuniform, volu
metric heating while confined within a long rectangular en
closure of small width. The heating time scale is assumed to 
be long compared with the time required for an acoustic wave 
to travel across the width of the enclosure but may be short 
compared with the time required for an acoustic wave to travel 
along the length of the enclosure. 

Partial acoustic filtering is developed and applied to the 
equations of motion for two-dimensional rectangular geom
etries. Approximate equations are derived which show that the 
pressure variation across the width is decoupled from the gas 
motion. Also, the velocity field across the width is seen to be 
driven by the deviation from the average in the rate of change 
of internal energy density and acts to level out cross-axis var
iations in this quantity. Arguments were presented indicating 

that the time step limitation imposed by the explicit solution 
of the approximate system may be much less stringent than 
the time step limitation imposed by the explicit solution of the 
original system. 

In summary, partial acoustic filtering acts like an analytical 
filter by replacing an equation determining dpu/dt (conser
vation of momentum in the x direction) with an equation 
determining du/dx. This replacement removes pressure waves 
propagating across the width of the enclosure. It is possible 
that a computational method could be developed to solve the 
original system of equations which would act like a numerical 
filter to remove cross-axis pressure waves. Such a method 
would probably involve solving the x momentum equation in 
an implicit fashion. 

Acknowledgments 
This work was performed at Sandia National Laboratories, 

supported by the U.S. Department of Energy under contract 
number DE-AC04-76DP00789. 

References 
Book, D. L., 1981, Finite-Difference Techniques for Vectorized Fluid Dy

namics Calculations, Springer-Verlag, New York, Chapter 4. 
Neal, D. R., Sweatt, W. C , and Torczynski, J. R., 1989, "Resonator Design 

with an Intracavity Time-Varying Index Gradient," SPIE Paper 965-40, Current 
Developments in Optical Engineering III, R. E. Fischer and W. J. Smith, eds., 
SPIE Proceedings, Vol. 965, pp. 130-141. 

Neal, D. R., Torczynski, J. R., and Sweatt, W. C , 1990, "Time-Resolved 
Wavefront Measurements and Analyses for a Pulsed, Nuclear-Reactor-Pumped 
Gain Region," Optical Engineering, Vol. 29, No. 11, pp. 1404-1412. 

Paolucci, S., 1982, On the Filtering of Sound from the Navier-Stokes Equa
tions, Sandia Report SAND82-8257, Sandia National Laboratories, Albuquer
que, NM. 

Rehm, R. G., and Baum, H. R., 1978, "The Equations of Motion for Ther
mally Driven Buoyant Flows," Journal of Research of the National Bureau of 
Standards, Vol. 83, pp. 297-308. 

Torczynski, J. R., 1989, "On the Motion of a Gas Experiencing Range-
Dependent Volumetric Heating," Journal of Fluid Mechanics, Vol. 201, pp. 
167-188. 

Torczynski, J. R., and Gross, R. J., 1988, "The Gasdynamics of Fission-
Fragment Heating," Proceedings of the 1st National Fluid Dynamics Congress, 
C. Dalton, ed., AIAA, Washington, DC, pp. 1040-1047. 

Torczynski, J. R., Gross, R. J., Hays, G. N., Harms, G. A., Neal, D. R., 
McArthur, D. A., and Alford, W. J., 1989, "Fission-Fragment Energy Depo
sition in Argon," Nuclear Science and Engineering, Vol. 101, No. 3, pp. 280-
284. 

Torczynski, J. R., and Neal, D. R., 1988, Effect of Gasdynamics on Resonator 
Stability in Reactor-Pumped Lasers, Sandia Report SAND88-1318, Sandia Na
tional Laboratories, Albuquerque, NM. 

Reattachment Length Behind a Single Roughness Ele-
ment in Turbulent Pipe Flow 

J. Faramarzi1 and E. Logan2 

Introduction 
As shear flow passes over an obstacle, it becomes separated 

on top of the obstacle. This separated shear layer curves sharply 
downstream in the reattachment region. Part of the shear layer 

Mechanical Engineer, Control Components, Inc., Rancho Santa Margarita, 
Calif. 

Professor, Mechanical and Aerospace Engineering Department, Arizona State 
University, Tempe, Ariz. 

Contributed by the Fluids Engineering Division of THE AMERICAN SOCIETY 
OF MECHANICAL ENGINEERS. Manuscript received by the Fluids Engineering Di
vision November 20, 1990. 

712 / Vol. 113, DECEMBER 1991 Transactions of the ASME 

Downloaded 02 Jun 2010 to 171.66.16.104. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



^ O i -

teoeoooooooooooooooeo 

Density (kg/m3) 

\ 

Velocity (m/s) s 
Pmrf 

-0.5 0.0 

x (cm) 
0.5 1.0 

Fig. 1 Density and velocity versus position at (= 0 (peak heating): curves, 
partial acoustic filtering; symbols, full equations 

100.0 <• 

-0.1 0.0 0.1 

Time (ms) 
0.3 

Fig. 2 Pressure versus time: solid curve, partial acoustic filtering; open 
symbols, full equations at x = 0 (only one point is shown for every 25 
history points) 

to discretize the domain. A mean time step of 0.12 jus (the time 
stepping is adaptive) is employed in the former based on the 
limitation discussed above, but a fixed time step of 12 /xs is 
used in the latter, which represents a hundredfold reduction 
in computational effort. Since the sound speed in argon is 
323 m/s (prior to heating) and flow velocities on the order of 
2 m/s are observed, the ratio am/um is on the order of 100, 
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closure of small width. The heating time scale is assumed to 
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compared with the time required for an acoustic wave to travel 
along the length of the enclosure. 
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equations of motion for two-dimensional rectangular geom
etries. Approximate equations are derived which show that the 
pressure variation across the width is decoupled from the gas 
motion. Also, the velocity field across the width is seen to be 
driven by the deviation from the average in the rate of change 
of internal energy density and acts to level out cross-axis var
iations in this quantity. Arguments were presented indicating 

that the time step limitation imposed by the explicit solution 
of the approximate system may be much less stringent than 
the time step limitation imposed by the explicit solution of the 
original system. 

In summary, partial acoustic filtering acts like an analytical 
filter by replacing an equation determining dpu/dt (conser
vation of momentum in the x direction) with an equation 
determining du/dx. This replacement removes pressure waves 
propagating across the width of the enclosure. It is possible 
that a computational method could be developed to solve the 
original system of equations which would act like a numerical 
filter to remove cross-axis pressure waves. Such a method 
would probably involve solving the x momentum equation in 
an implicit fashion. 
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fluid is deflected upstream into a highly turbulent recirculation 
zone by a strong adverse pressure gradient. Downstream shape 
of the obstacle has a strong effect on the size of the separated 
flow and limits the entrainment of this internal shear layer. 
Downstream of the reattachment a new sublayer starts to grow. 
The reattachment length for obstacles with a rectangular cross-
sectional shape has been estimated by a number of investi
gators, e.g., Mueller and Robertson (1962), Bradshaw and 
Wong (1972), Bergeles and Athanassiadis (1983), and Logan 
and Phataraphruk (1989).'The need to determine the reat
tachment length more precisely inspired the present investi
gation, the objective of which is to determine the dependence 
of reattachment length (LR) on element height (H), element 
width (W), pipe radius (R), and Reynolds number (Re). Such 
results are helpful in evaluation of numerical schemes for pre
dicting flow fields and heat transfer or mixing rates in the 
wakes of obstacles. 

Apparatus and Test Method 
Reattachment lengths were determined from pressure meas-

H 

T 

-CORNER EDDY 

- RECIRCULATION ZONE 

RECOVERY REGION 

Fig. 1 Test configuration 

SUPPORT SHAFT SUPPORT SHAFT 

PIPE WALLC 

-FORWARD FACING PROBE -BACKWARD FACING PROBE 

Fig. 2 Forward and backward-facing pressure probes 

urements and flow visualization techniques. Ring-shaped ele
ments of square cross-section were fitted against the inside wall 
of 101.6 mm (4 in.) Plexiglas pipe shown in Fig. 1. Element 
heights of 0.10, 0.15, and 0.20 times the pipe radius were used 
in the tests. The width of elements were increased by combining 
square elements of the same height. A fully-developed air flow 
is produced upstream of the test section at Reynolds numbers 
of 64,000 and 113,600. 

Pressure probes were made of 0.56-mm (0.0220-in.) hypo
dermic tubing and their form is depicted in Fig. 2. The probes 
were located in at the pipe wall and used to measure total 
pressure. They were connected to a Statham transducer, which 
was connected to a bridge amplifier and voltmeter. Static pres
sure was measured along the wall using 22 wall pressure taps 
on 5.1-mm (0.2-in.) centers and 11 taps on 10.2-mm (0.4-in.) 
centers. The probes were positioned by means of a micrometer-
driven traversing device. The forward-facing probes were 
moved along the test section wall behind the element, and then 
the backward-facing probes were moved over the same path. 
Comparison of the resulting pressure readings led to precise 
determination of reattachment lengths. The accuracy of reat
tachment length was determined by examining its variation due 
to the uncertainty in measurements of pressure and length. 

Flow visualization was used to locate the reattachment point 
as well. The wall pressure taps were used to inject a mixture 
of writing ink and rubbing alcohol. The mixture was forced 
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Fig. 3 Pressure versus X/H for H/R = 0.10, W/H= 1 (uncertainty in X/H 
= + / - 1 percent, in pressures +1-2 percent) 

Table 1 Tabulated reattachment lengths 
(a) Reattachment length results from pressure measurements 

W/H 

1 
2 
3 
4 
5 
6 
7 

Accuracy (+ / --) 

H/R = 0.1 

9.2 
6.1 
5.9 
6.0 
6.0 
6.0 
6.1 
0.3 

Re = 113000 

H/R = 0.15 

9.1 
6.5 
6.4 
6.2 
6.4 
6.5 
6.4 
0.25 

H/R = 0.2 

8.9 
6.9 
6.5 
6.7 
6.6 
6.5 
6.6 
0.2 

(b) Reattachment length results from flow visualization 

W/H 

1 
2 
3 
4 
5 
6 
7 

Accuracy (+ / --) 

H/R = 0.1 

9.5 
6 
6 
6 
6 
6 
6 
0.5 

Re = 113000 

H/R = 0A5 

9 
6.5 
6.5 
6.5 
6.5 
6.5 
6.5 
0.33 

H/R = 0.2 

9 
6.75 
6.5 
6.5 
6.5 
6.5 
6.5 
0.25 

H/R = 0.1 

9.1 
5.9 
6.0 
6.0 
6.0 
6.0 
6.0 
0.3 

H/R = 0.1 

9.5 
6 
6 
6 
6 
6 
6 
0.5 

Re = 64000 

H/R = 0.15 

9.2 
6.5 
6.5 
6.5 
6.5 
6.5 
6.5 
0.25 

Re = 64000 

H/R = 0.\5 

9 
6.5 
6.5 
6.5 
6.5 
6.5 
6.5 
0.33 

H/R = 0.2 

9.1 
6.8 
6.7 
6.8 
6.7 
6.7 
6.7 
0.2 

H/R = 0.2 

9 
6.75 
6.5 
6.5 
6.5 
6.5 
6.5 
0.25 
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Fig. 4 Reattachment length versus element height (uncertainty in LR/H 
= +1- 0.25 for H/R = 0.20, + / -0.33forH/f l = 0.15, + / -0 .5forH/ f l = 0.10) 

to move upstream or downstream from the point of injection 
by fluid stresses. When adjacent ports had outflows in opposite 
directions, the midpoint between the ports was assumed to be 
the reattachment point and its accuracy assumed to be one 
half the distance between the two adjacent ports. 

Results 
Figure 3 shows a typical result of the pressure measurements 

as a function of axial position X/H and height of the element 
H/R. In this figure, the symbols Ps, PF, and PB refer to the 
static pressure reading, the total pressure reading with the 
forward-facing tube, and the total pressure reading with back
ward-facing tube, respectively. In this and all other test cases, 

the curves representing the pressures as well as those repre
senting the pressure differences intersect at the value of X/H 
corresponding to the reattachment point. The values of the 
non-dimensional reattachment length LR/H are tabulated in 
Table 1 for values of H/R and W/H used in the tests. There 
was good agreement between the results from pressure meas
urements and flow visualization as seen from Table 1. The 
results also indicate that for highly turbulent flows (high Reyn
olds numbers) the reattachment length is independent of Reyn
olds number. Results of Table 1(a) are shown graphically in 
Fig. 4. As shown in this figure, as H/R increases, so does the 
entrainment of the internal shear layer and the reattachment 
length LR/H. 

Conclusions 
The following conclusions are drawn regarding the flow 

reattachment length behind obstacles with rectangular cross-
sectional shapes: 

1) Reattachment length is independent of Reynolds number. 
2) Reattachment length is a strong function of obstacle width 

for W/H less than some critical value. The critical value of 
W/H is between 1 and 2 for H/R = 0.10 and 0.15 and between 
2 and 3 for H/R = 0.20. 

3) The asymptotic value of reattachment length is a weak 
function of H/R. LR/H reaches a minimum of 6.0 for H/R 
= 0.10 and 6.5 for H/R = 0.15 and 0.20. 
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